MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mo-MODIFIED Ti6Al4V SPUR GEAR

被引:1
|
作者
Ma, Yong [1 ]
Niu, Xiaoyan [2 ]
Qin, Lin [1 ]
Lin, Naiming [1 ]
Zhang, Xiangyu [1 ]
Tang, Bin [1 ]
机构
[1] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Hebei Univ, Coll Civil Engn, Baoding 071002, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
TC4 spur gear; plasma surface alloying; nanoindentation; wear testing; CONTACT FATIGUE; WEAR-RESISTANCE; TRIBOLOGICAL BEHAVIOR; NUMERICAL-SIMULATION; TI-6AL-4V ALLOY; TITANIUM-ALLOY; COATINGS; INDENTATION; COMPOSITE; STEEL;
D O I
10.1142/S0218625X17500305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to improve the performance of the Ti6Al4V (TC4) spur gear, a Mo surface modified layer is prepared by the plasma surface metallurgy technique. The element concentration, microstructure and elastoplastic properties are investigated with glow-discharge optical emission spectroscope (GDOES), scanning electron microscope, optical microscope (OM) and nanoindenter. Engaging with 41Cr4 steel gears, the wear resistances of the treated and untreated TC4 spur gears are evaluated through running-in and operation tests performed by a friction and wear tester under lubricated conditions. By finite element analysis, contact stress distributions in the TC4 and 41Cr4 spur gears pair are quantitatively determined. The results indicate that, being compact and uniform, the Mo-modified layer has higher hardness and retains relatively fine plasticity. The wear resistance of the treated TC4 spur gear is improved significantly.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High strength Mo/Ti6Al4V diffusion bonding joints: Interfacial microstructure and mechanical properties
    Yao, Qing
    Cheng, Huichao
    Fan, Jinglian
    Yan, Haixiang
    Zhang, Chenggong
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 82 : 159 - 166
  • [2] Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy
    Balla, Vamsi Krishna
    Soderlind, Julie
    Bose, Susmita
    Bandyopadhyay, Amit
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 32 : 335 - 344
  • [3] Influence of Cryogenic Treatment on Microstructure and Mechanical Properties of Ti6Al4V Alloy
    Cakir, Fatih Hayati
    Celik, Osman Nuri
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (10) : 6974 - 6984
  • [4] Effect of Substrate Surface Roughness on Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings on Ti6Al4V Substrates
    Tan, Adrian Wei-Yee
    Sun, Wen
    Bhowmik, Ayan
    Lek, Jun Yan
    Song, Xu
    Zhai, Wei
    Zheng, Han
    Li, Feng
    Marinescu, Iulian
    Dong, Zhili
    Liu, Erjia
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2019, 28 (08) : 1959 - 1973
  • [5] Effect of coating thickness on microstructure, mechanical properties and fracture behaviour of cold sprayed Ti6Al4V coatings on Ti6Al4V substrates
    Tan, Adrian Wei-Yee
    Sun, Wen
    Bhowmik, Ayan
    Lek, Jun Yan
    Marinescu, Iulian
    Li, Feng
    Khun, Nay Win
    Dong, Zhili
    Liu, Erjia
    SURFACE & COATINGS TECHNOLOGY, 2018, 349 : 303 - 317
  • [6] Effect of vibration during GTAW welding on microstructure and mechanical properties of Ti6Al4V
    Zeidabadi, Hamed
    Mirdamadi, Shamsadin
    Godarzi, Masoud
    RUSSIAN JOURNAL OF NON-FERROUS METALS, 2015, 56 (02) : 217 - 221
  • [7] Microstructure and Mechanical Properties of MWCNT/Ti6Al4V Composites Consolidated by Vacuum Sintering
    Doan Dinh Phuong
    Luong Van Duong
    Nguyen Ngoc Anh
    Pham Van Trinh
    SCIENCE OF SINTERING, 2020, 52 (02) : 187 - 194
  • [8] Microstructure and nanoindentation behaviour of Ni surface modified Ti6Al4V
    Yang, H.
    Wang, Z.
    Zhang, H.
    Ma, Y.
    Liu, X.
    He, Z.
    SURFACE ENGINEERING, 2015, 31 (12) : 923 - 929
  • [9] Effect of Thermal Oxidation Duration on Microstructure and Properties of Ti6Al4V Alloy
    Zou Jiaojuan
    Lin Naiming
    Qin Jianfeng
    Wang Zhenxia
    Ma Yong
    Tian Wei
    Yao Xiaofei
    Wang Zhihua
    Tang Bin
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (04) : 1254 - 1260
  • [10] Investigation of Ti3AlC2 formation mechanism through diffusional reaction between carbon and Mo-modified Ti6Al4V
    Xiao, Zhiyuan
    Ouyang, Sheng
    Zhu, Xiaoguang
    Xu, Wei
    Wang, Zhaoming
    Shao, Cheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (04) : 1125 - 1131