Closed geodesics on 2-dimensional x-geometric polyhedra

被引:0
作者
Charitos, C
Tsapogas, G
机构
[1] Agr Univ Athens, Dept Math, Athens 11855, Greece
[2] Univ Aegean, Dept Math, Karlovassi 83200, Samos, Greece
来源
HOUSTON JOURNAL OF MATHEMATICS | 1998年 / 24卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 2-dimensional finite chi-geometric polyhedra of curvature K less than or equal to chi < 0 it is shown that the polygonal flow, applied to a closed curve, converges to a geodesic. Moreover, it is shown that there exists a finite number of closed geodesics with length smaller than a given positive B. As an application of the polygonal flow, a way of constructing closed, in particular simple, curves is given as well as a condition which implies that a curve is non-homotopic to a point.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 14 条
[1]  
BALLMAN W, 1990, GROUPS HYPERBOLIQUES
[2]  
BENAKLI N, 1991, CR ACAD SCI I-MATH, V313, P561
[3]  
BENAKLI N, 1991, GROUPES HYPERBOLIQUE
[4]  
BRIDSON MR, 1991, GROUP THEORY GEOMETR
[5]  
Charitos C, 1996, ROCKY MT J MATH, V26, P507, DOI 10.1216/rmjm/1181072071
[6]   Complexity of geodesics on 2-dimensional ideal polyhedra and isotopies [J].
Charitos, C ;
Tsapogas, G .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 121 :343-358
[7]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [10.1007/978-1-4613-9586-7_3, DOI 10.1007/978-1-4613-9586-7_3]
[8]  
Gromov M., 1981, Structures metriques pour les varieties riemanniennes, V1
[9]  
HAGLUND F, 1991, CR ACAD SCI I-MATH, V313, P603
[10]   SHORTENING CURVES ON SURFACES [J].
HASS, J ;
SCOTT, P .
TOPOLOGY, 1994, 33 (01) :25-43