Badly approximable numbers over imaginary quadratic fields

被引:8
作者
Hines, Robert [1 ]
机构
[1] Univ Colorado, Dept Math, Campus Box 395, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
continued fractions; Bianchi groups; binary Hermitian forms; COMPLEX NUMBERS;
D O I
10.4064/aa170810-18-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:101 / 125
页数:25
相关论文
共 20 条
  • [1] [Anonymous], 2003, GRAD TEXTS MATH
  • [2] [Anonymous], 1997, CONTINUED FRACTIONS
  • [3] Bianchi L., 1892, Math. Ann, V40, P332
  • [4] COMPLEX NUMBERS WITH BOUNDED PARTIAL QUOTIENTS
    Bosma, Wieb
    Gruenewald, David
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 93 (1-2) : 9 - 20
  • [5] Continued fraction expansions for complex numbers-a general approach
    Dani, S. G.
    [J]. ACTA ARITHMETICA, 2015, 171 (04) : 355 - 369
  • [6] Dani S. G., 2017, ARXIV170307672
  • [7] DANI SG, 1985, J REINE ANGEW MATH, V359, P55
  • [8] Badly approximable vectors, C1 curves and number fields
    Einsiedler, Manfred
    Ghosh, Anish
    Lytle, Beverly
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1851 - 1864
  • [9] Elstrodt J., 1998, Springer Monogr. Maths
  • [10] Reduction theory over quadratic imaginary fields
    Fried, D
    [J]. JOURNAL OF NUMBER THEORY, 2005, 110 (01) : 44 - 74