The Limits and Avoidance of Biases in Metagenomic Analyses of Human Fecal Microbiota

被引:12
作者
Bergsten, Emma [1 ]
Mestivier, Denis [1 ,2 ]
Sobhani, Iradj [1 ,3 ]
机构
[1] Univ Paris Est, EA7375 EC2M3 Res Team, F-94010 Creteil, France
[2] Inst Natl Sante & Rech Med UPEC, UMR 955, Inst Mondor Rech Biomed, Bioinformat Core Facil, F-94010 Creteil, France
[3] Hop Henri Mondor, AP HP, Serv Gastroenterol, F-94010 Creteil, France
关键词
metagenomic; 16S RNA; pipeline; biases; fecal microbiota; GUT MICROBIOTA; BACTERIA;
D O I
10.3390/microorganisms8121954
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
An increasing body of evidence highlights the role of fecal microbiota in various human diseases. However, more than two-thirds of fecal bacteria cannot be cultivated by routine laboratory techniques. Thus, physicians and scientists use DNA sequencing and statistical tools to identify associations between bacterial subgroup abundances and disease. However, discrepancies between studies weaken these results. In the present study, we focus on biases that might account for these discrepancies. First, three different DNA extraction methods (G'NOME, QIAGEN, and PROMEGA) were compared with regard to their efficiency, i.e., the quality and quantity of DNA recovered from feces of 10 healthy volunteers. Then, the impact of the DNA extraction method on the bacteria identification and quantification was evaluated using our published cohort of sample subjected to both 16S rRNA sequencing and whole metagenome sequencing (WMS). WMS taxonomical assignation employed the universal marker genes profiler mOTU-v2, which is considered the gold standard. The three standard pipelines for 16S RNA analysis (MALT and MEGAN6, QIIME1, and DADA2) were applied for comparison. Taken together, our results indicate that the G'NOME-based method was optimal in terms of quantity and quality of DNA extracts. 16S rRNA sequence-based identification of abundant bacteria genera showed acceptable congruence with WMS sequencing, with the DADA2 pipeline yielding the highest congruent levels. However, for low abundance genera (<0.5% of the total abundance) two pipelines and/or validation by quantitative polymerase chain reaction (qPCR) or WMS are required. Hence, 16S rRNA sequencing for bacteria identification and quantification in clinical and translational studies should be limited to diagnostic purposes in well-characterized and abundant genera. Additional techniques are warranted for low abundant genera, such as WMS, qPCR, or the use of two bio-informatics pipelines.
引用
收藏
页数:13
相关论文
共 36 条
[1]   Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR [J].
Ahlroos, T. ;
Tynkkynen, S. .
JOURNAL OF APPLIED MICROBIOLOGY, 2009, 106 (02) :506-514
[2]  
Aronesty E., Ea-utils: Command-Line Tools for Processing Biological Sequencing Data
[3]   The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies [J].
Brooks, J. Paul ;
Edwards, David J. ;
Harwich, Michael D., Jr. ;
Rivera, Maria C. ;
Fettweis, Jennifer M. ;
Serrano, Myrna G. ;
Reris, Robert A. ;
Sheth, Nihar U. ;
Huang, Bernice ;
Girerd, Philippe ;
Strauss, Jerome F., III ;
Jefferson, Kimberly K. ;
Buck, Gregory A. .
BMC MICROBIOLOGY, 2015, 15
[4]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[5]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[6]   Intestinal microbiota and colorectal cancer: changes in the intestinal microenvironment and their relation to the disease [J].
dos Reis, Sandra Aparecida ;
da Conceicao, Lisiane Lopes ;
Gouveia Peluzio, Maria do Carmo .
JOURNAL OF MEDICAL MICROBIOLOGY, 2019, 68 (10) :1391-1407
[7]   Updating the 97% identity threshold for 16S ribosomal RNA OTUs [J].
Edgar, Robert C. .
BIOINFORMATICS, 2018, 34 (14) :2371-2375
[8]   Gut microbiome development along the colorectal adenoma-carcinoma sequence [J].
Feng, Qiang ;
Liang, Suisha ;
Jia, Huijue ;
Stadlmayr, Andreas ;
Tang, Longqing ;
Lan, Zhou ;
Zhang, Dongya ;
Xia, Huihua ;
Xu, Xiaoying ;
Jie, Zhuye ;
Su, Lili ;
Li, Xiaoping ;
Li, Xin ;
Li, Junhua ;
Xiao, Liang ;
Huber-Schoenauer, Ursula ;
Niederseer, David ;
Xu, Xun ;
Al-Aama, Jumana Yousuf ;
Yang, Huanming ;
Wang, Jian ;
Kristiansen, Karsten ;
Arumugam, Manimozhiyan ;
Tilg, Herbert ;
Datz, Christian ;
Wang, Jun .
NATURE COMMUNICATIONS, 2015, 6
[9]   Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR [J].
Furet, Jean-Pierre ;
Firmesse, Olivier ;
Gourmelon, Michele ;
Bridonneau, Chantal ;
Tap, Julien ;
Mondot, Stanislas ;
Dore, Joel ;
Corthier, Gerard .
FEMS MICROBIOLOGY ECOLOGY, 2009, 68 (03) :351-362
[10]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)