A hierarchical learning paradigm for semi-supervised classification of remote sensing images

被引:0
作者
Alhichri, Haikel [1 ]
Bazi, Yacoub [1 ]
Alajlan, Naif [1 ]
Ammour, Nassim [1 ]
机构
[1] King Saud Univ, ALISR Lab, Dept Comp Engn, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
来源
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2015年
关键词
Hyperspectral and VHR images; semi-supervised classification; Hierarchical learning paradigms; Extreme Learning Machine (ELM); Random Walker (RW) algorithm; HYPERSPECTRAL IMAGES; MACHINE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a new semi-supervised method for the classification of hyperspectral and VHR remote sensing images. The method is based on a hierarchical learning paradigm which is composed of multiple layers feeding into each other: 1) feature extraction layer, 2) classification layer, and 3) spatial regularization layer. In the feature extraction layer, the method employs morphological operators. In case of hyperspectral images, a dimensionality reduction step is first applied using an algorithm such PCA. In layer 2, the Extreme Learning Machine is trained and used to build an initial classification map of the image. Finally, in layer 3, a regularization step is applied to exploit spatial information between all pixels in the image. The Random Walker (RW) algorithm is used for this purpose, which uses the output results of layer 2, such as the class map and the posterior probabilities, as inputs. Initial results are obtained using the PAVIA dataset, which outperform the state-of-the-art methods in terms of accuracy and execution times.
引用
收藏
页码:4388 / 4391
页数:4
相关论文
共 10 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images [J].
Bazi, Yakoub ;
Alajlan, Naif ;
Melgani, Farid ;
AlHichri, Haikel ;
Malek, Salim ;
Yager, Ronald R. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) :1066-1070
[3]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399
[4]   Fusion of Extreme Learning Machine and Graph-Based Optimization Methods for Active Classification of Remote Sensing Images [J].
Bencherif, Mohamed A. ;
Bazi, Yakoub ;
Guessoum, Abderrezak ;
Alajlan, Naif ;
Melgani, Farid ;
AlHichri, Haikel .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) :527-531
[5]   MEAN SHIFT, MODE SEEKING, AND CLUSTERING [J].
CHENG, YZ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) :790-799
[6]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[7]   Universal approximation using incremental constructive feedforward networks with random hidden nodes [J].
Huang, Guang-Bin ;
Chen, Lei ;
Siew, Chee-Kheong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04) :879-892
[8]   Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :4085-4098
[9]   New Semi-Supervised Classification Method Based on Modified Cluster Assumption [J].
Wang, Yunyun ;
Chen, Songcan ;
Zhou, Zhi-Hua .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (05) :689-702
[10]  
Wang Zhangyang, 2015, GEOSCIENCE REMOTE SE, V53, P1161