EXISTENCE RESULT FOR A PROBLEM INVOLVING ψ-RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE ON UNBOUNDED DOMAIN

被引:1
作者
Benia, Kheireddine [1 ]
Beddani, Moustafa [1 ]
Feckan, Michal [2 ,3 ]
Hedia, Benaouda [4 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Dept Math, POB 89, Sidi Bel Abbes 22000, Algeria
[2] Univ Bratislava Mlynska Dolina, Dept Math Anal & Numer Math Comenius, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[4] Univ Tiaret, Lab Math & Comp Sci, POB 78, Tiaret 14000, Algeria
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2022年 / 14卷 / 01期
关键词
Measure of non-compactness; Meir-Keeler condensing operators; special Banach space; fixed point theorem; psi-Riemann-Liouville fractional derivative; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATION; CAUCHY-PROBLEM; SYSTEM;
D O I
10.7153/dea-2022-14-06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the the existence of solution sets and its topological structure for a fractional differential equation with-Riemann-Liouville fractional derivative on (0,infinity) in a special Banach space. Our approach is based on a fixed point theorem for Meir-Keeler condensing operators combined with measure of non-compactness. An example is given to illustrate our approach.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 30 条
[1]  
Abbas S, 2018, DEGRUYTER SER NONLIN, V26, P1, DOI 10.1515/9783110553819
[2]  
Abbas S., 2012, TOPICS FRACTIONAL DI, DOI [DOI 10.1007/978-1-4614-4036-9, 10.1007/978-1-4614-4036-9]
[3]  
ABBAS S., 2015, Advanced Fractional Differential and Integral Equations
[4]  
AGHAJANI A., ACTA MATH SCI, V35
[5]   Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations [J].
Ahmad, Bashir .
APPLIED MATHEMATICS LETTERS, 2010, 23 (04) :390-394
[6]   Fractional order differential equations on an unbounded domain [J].
Arara, A. ;
Benchohra, M. ;
Hamidi, N. ;
Nieto, J. J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :580-586
[7]   Existence results for fractional impulsive integrodifferential equations in Banach spaces [J].
Balachandran, K. ;
Kiruthika, S. ;
Trujillo, J. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) :1970-1977
[8]   Nonlocal Cauchy problem for abstract fractional semilinear evolution equations [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4471-4475
[9]   The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces [J].
Balachandran, Krishnan ;
Trujillo, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4587-4593
[10]  
BANA J., 1980, LECT NOTE PURE APP M, V60