NONLINEAR EQUATIONS INVOLVING THE SQUARE ROOT OF THE LAPLACIAN

被引:6
作者
Ambrosio, Vincenzo [1 ]
Bisci, Giovanni Molica [2 ]
Repovs, Dusan [3 ,4 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, Italy
[2] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
[3] Univ Ljubljana, Fac Educ, SI-1000 Ljubljana, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2019年 / 12卷 / 02期
关键词
Fractional Laplacian; variational methods; multiple solutions; MULTIPLE SOLUTIONS; FRACTIONAL LAPLACIAN; EXISTENCE;
D O I
10.3934/dcdss.2019011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the existence and non- existence of weak solutions to parametric fractional equations involving the square root of the Laplacian A(1/2) in a smooth bounded domain Omega subset of R-n (n >= 2) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation {A1/2u = lambda f(u) in Omega u = 0 on partial derivative Omega. The existence of at least two non-trivial L-infinity-bounded weak solutions is established for large value of the parameter A, requiring that the nonlinear term f is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method.
引用
收藏
页码:151 / 170
页数:20
相关论文
共 41 条
[21]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[22]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[23]   SOLUTIONS OF A PURE CRITICAL EXPONENT PROBLEM INVOLVING THE HALF-LAPLACIAN IN ANNULAR-SHAPED DOMAINS [J].
Capella, Antonio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) :1645-1662
[24]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[25]   Multiple solutions of a sublinear Schrodinger equation [J].
Kristaly, Alexandru .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (3-4) :291-301
[26]   Elliptic problems on the ball endowed with Funk-type metrics [J].
Kristaly, Alexandru ;
Rudas, Imre J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 :199-208
[27]   On the Schrodinger-Maxwell system involving sublinear terms [J].
Kristaly, Alexandru ;
Repovs, Dusan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :213-223
[28]   Multiple solutions for a Neumann system involving subquadratic nonlinearities [J].
Kristaly, Alexandru ;
Repovs, Dusan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2127-2132
[29]   Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations [J].
Kristaly, Alexandru ;
Radulescu, Vicentiu .
STUDIA MATHEMATICA, 2009, 191 (03) :237-246
[30]   Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity [J].
Kristaly, Alexandru ;
Varga, Csaba .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :139-148