NONLINEAR EQUATIONS INVOLVING THE SQUARE ROOT OF THE LAPLACIAN
被引:6
作者:
Ambrosio, Vincenzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, ItalyUniv Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, Italy
Ambrosio, Vincenzo
[1
]
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyUniv Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, Italy
Bisci, Giovanni Molica
[2
]
Repovs, Dusan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Educ, SI-1000 Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, SloveniaUniv Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, Italy
Repovs, Dusan
[3
,4
]
机构:
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, Italy
[2] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
[3] Univ Ljubljana, Fac Educ, SI-1000 Ljubljana, Slovenia
[4] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
|
2019年
/
12卷
/
02期
In this paper we discuss the existence and non- existence of weak solutions to parametric fractional equations involving the square root of the Laplacian A(1/2) in a smooth bounded domain Omega subset of R-n (n >= 2) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation {A1/2u = lambda f(u) in Omega u = 0 on partial derivative Omega. The existence of at least two non-trivial L-infinity-bounded weak solutions is established for large value of the parameter A, requiring that the nonlinear term f is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method.
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
Ambrosio, Vincenzo
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
机构:
Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
Bartolo, Rossella
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, Via Melissari 24, I-89124 Reggio Di Calabria, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
机构:
Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
Bartolo, Rossella
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, Italy
Bisci, Giovanni Molica
Repovs, Dusan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaUniv Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, Italy
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
Ambrosio, Vincenzo
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cinthia, I-80126 Naples, Italy
机构:
Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
Bartolo, Rossella
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, Via Melissari 24, I-89124 Reggio Di Calabria, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
机构:
Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
Bartolo, Rossella
Bisci, Giovanni Molica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, Italy
Bisci, Giovanni Molica
Repovs, Dusan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Educ, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaUniv Mediterranea Reggio Calabria, Dipartimento PAU, Reggio Di Calabria, Italy