Solitary Wave Solutions for the Stochastic Fractional-Space KdV in the Sense of the M-Truncated Derivative

被引:12
作者
Mohammed, Wael W. [1 ,2 ]
Cesarano, Clemente [3 ]
Al-Askar, Farah M. [4 ]
El-Morshedy, Mahmoud [5 ,6 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[4] Abdulrahman Univ, Dept Math Sci, Collage Sci, Princess Nourah Bint, POB 84428, Riyadh 84428, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[6] Mansoura Univ, Fac Sci, Dept Stat & Comp Sci, Mansoura 35516, Egypt
关键词
stochastic KdV; fractional KdV; analytical solutions; stability by noise; NONLINEAR EVOLUTION; TANH METHOD; EQUATIONS; BEHAVIORS; SYSTEMS; FISHER;
D O I
10.3390/math10244792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic fractional-space Korteweg-de Vries equation (SFSKdVE) in the sense of the M-truncated derivative is examined in this article. In the Ito sense, the SFSKdVE is forced by multiplicative white noise. To produce new trigonometric, hyperbolic, rational, and elliptic stochastic fractional solutions, the tanh-coth and Jacobi elliptic function methods are used. The obtained solutions are useful in interpreting certain fascinating physical phenomena because the KdV equation is essential for understanding the behavior of waves in shallow water. To demonstrate how the multiplicative noise and the M-truncated derivative impact the precise solutions of the SFSKdVE, different 3D and 2D graphical representations are plotted.
引用
收藏
页数:11
相关论文
共 47 条
  • [1] Agarwal R P., 2022, ALEX ENG J, V61, P11825, DOI [10.1016/j.aej.2022.05.032, DOI 10.1016/j.aej.2022.05.0321110-0168]
  • [2] Akdi M.B., 2013, AM J MOD PHYS, V2, P111, DOI [10.11648/j.ajmp.20130203.13, DOI 10.11648/J.AJMP.20130203.13]
  • [3] The Exact Solutions for Fractional-Stochastic Drinfel'd-Sokolov-Wilson Equations Using a Conformable Operator
    Al-Askar, Farah M.
    Mohammed, Wael W.
    Samura, Sallieu K.
    El-Morshedy, M.
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [4] The Analytical Solutions of Stochastic-Fractional Drinfel'd-Sokolov-Wilson Equations via (G′/G)-Expansion Method
    Al-Askar, Farah M.
    Cesarano, Clemente
    Mohammed, Wael W.
    [J]. SYMMETRY-BASEL, 2022, 14 (10):
  • [5] Multiplicative Brownian Motion Stabilizes the Exact Stochastic Solutions of the Davey-Stewartson Equations
    Al-Askar, Farah M.
    Cesarano, Clemente
    Mohammed, Wael W.
    [J]. SYMMETRY-BASEL, 2022, 14 (10):
  • [6] Impact of Brownian Motion on the Analytical Solutions of the Space-Fractional Stochastic Approximate Long Water Wave Equation
    Al-Askar, Farah M.
    Mohammed, Wael W.
    Alshammari, Mohammad
    [J]. SYMMETRY-BASEL, 2022, 14 (04):
  • [7] The solution of fractional-order system of KdV equations with exponential-decay kernel
    Alshammari, Mohammad
    Iqbal, Naveed
    Mohammed, Wael W.
    Botmart, Thongchai
    [J]. RESULTS IN PHYSICS, 2022, 38
  • [8] NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model
    Atangana, Abdon
    Baleanu, Dumitru
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 763 - 769
  • [9] New properties of conformable derivative
    Atangana, Abdon
    Baleanu, Dumitru
    Alsaedi, Ahmed
    [J]. OPEN MATHEMATICS, 2015, 13 : 889 - 898
  • [10] A nonlinear Galerkin method for the shallow-water equations on periodic domains
    Barros, SRM
    Cárdenas, JW
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) : 592 - 608