Estimating the Finite Time Lyapunov Exponent from Sparse Lagrangian Trajectories

被引:6
|
作者
Ng, Yu-Keung [1 ]
Leung, Shingyu [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
关键词
Dynamical system; visualization; finite time Lyapunov exponent; numerical methods for differential equations; RADIAL BASIS FUNCTIONS; COHERENT STRUCTURES; PARTITION;
D O I
10.4208/cicp.OA-2018-0149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple numerical algorithm to estimate the finite time Lyapunov exponent (FTLE) in dynamical systems from only a sparse number of Lagrangian particle trajectories. The method first reconstructs the flow field using the radial basis function (RBF) and then uses either the Lagrangian or the Eulerian approach to determine the corresponding flow map. We also develop a simple algorithm based on the Schur complement for updating, rather than recomputing, the reconstruction in the RBF when new trajectory data is made available in applications. We will demonstrate the effectiveness of the proposed method using examples from autonomous and aperiodic flows, and also measurements from real-life data.
引用
收藏
页码:1143 / 1177
页数:35
相关论文
共 50 条
  • [21] Estimating Lagrangian trajectories with an ADCP
    Rajamony, J
    Hebert, D
    Rossby, T
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 1999, 16 (09) : 1255 - 1263
  • [22] Interactive Computation and Rendering of Finite-Time Lyapunov Exponent Fields
    Barakat, Samer
    Garth, Christoph
    Tricoche, Xavier
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (08) : 1368 - 1380
  • [23] Relation Between the Finite-Time Lyapunov Exponent and Acoustic Wave
    Han, Shuaibin
    Luo, Yong
    Zhang, Shuhai
    AIAA JOURNAL, 2019, 57 (12) : 5114 - 5125
  • [24] Localized Finite-time Lyapunov Exponent for unsteady flow analysis
    Zuse Institute Berlin, Germany
    不详
    VMV 2009 - Proc. Vision, Model., Vis. Workshop 2009, (265-274):
  • [26] Robust method for estimating the largest Lyapunov exponent
    Yang, Shaoqing
    Zhang, Xinhua
    Zhao, Chang'an
    Wuli Xuebao/Acta Physica Sinica, 2000, 49 (04): : 636 - 640
  • [27] A robust method for estimating the largest Lyapunov exponent
    Yang, SQ
    Zhang, XH
    Zhao, CA
    ACTA PHYSICA SINICA, 2000, 49 (04) : 636 - 640
  • [28] An Improved Algorithm for Estimating the Largest Lyapunov Exponent
    Yang, Aibo
    Wang, Ji
    Liu, Shuyong
    Wei, Xiulei
    Yang, Qingchao
    COMMUNICATIONS AND INFORMATION PROCESSING, PT 1, 2012, 288 : 37 - 44
  • [29] Lagrangian Reduced Order Modeling Using Finite Time Lyapunov Exponents
    Xie, Xuping
    Nolan, Peter J.
    Ross, Shane D.
    Mou, Changhong
    Iliescu, Traian
    FLUIDS, 2020, 5 (04)
  • [30] Neural Monte Carlo rendering of finite-time Lyapunov exponent fields
    Yang Xi
    Wanna Luan
    Jun Tao
    Visual Intelligence, 1 (1):