Estimating the Finite Time Lyapunov Exponent from Sparse Lagrangian Trajectories

被引:6
|
作者
Ng, Yu-Keung [1 ]
Leung, Shingyu [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
关键词
Dynamical system; visualization; finite time Lyapunov exponent; numerical methods for differential equations; RADIAL BASIS FUNCTIONS; COHERENT STRUCTURES; PARTITION;
D O I
10.4208/cicp.OA-2018-0149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple numerical algorithm to estimate the finite time Lyapunov exponent (FTLE) in dynamical systems from only a sparse number of Lagrangian particle trajectories. The method first reconstructs the flow field using the radial basis function (RBF) and then uses either the Lagrangian or the Eulerian approach to determine the corresponding flow map. We also develop a simple algorithm based on the Schur complement for updating, rather than recomputing, the reconstruction in the RBF when new trajectory data is made available in applications. We will demonstrate the effectiveness of the proposed method using examples from autonomous and aperiodic flows, and also measurements from real-life data.
引用
收藏
页码:1143 / 1177
页数:35
相关论文
共 50 条
  • [1] Lagrangian coherent structures and the smallest finite-time Lyapunov exponent
    Haller, George
    Sapsis, Themistoklis
    CHAOS, 2011, 21 (02)
  • [2] UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications
    Rocío Carratalá-Sáez
    Yuri Torres
    José Sierra-Pallares
    Sergio López-Huguet
    Diego R. Llanos
    The Journal of Supercomputing, 2023, 79 : 9635 - 9665
  • [3] UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications
    Carratala-Saez, Rocio
    Torres, Yuri
    Sierra-Pallares, Jose
    Lopez-Huguet, Sergio
    Llanos, Diego R.
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (09): : 9635 - 9665
  • [4] Sparse subsampling of flow measurements for finite-time Lyapunov exponent in domains with obstacles
    Ng, Yu-Keung
    You, Guoqiao
    Leung, Shingyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 431
  • [5] Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents
    Branicki, M.
    Wiggins, S.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2010, 17 (01) : 1 - 36
  • [6] Estimating the largest Lyapunov exponent and noise level from chaotic time series
    Yao, Tian-Liang
    Liu, Hai-Feng
    Xu, Jian-Liang
    Li, Wei-Feng
    CHAOS, 2012, 22 (03)
  • [7] Nonlinear finite-time Lyapunov exponent and predictability
    Ding, Ruiqiang
    Li, Jianping
    PHYSICS LETTERS A, 2007, 364 (05) : 396 - 400
  • [8] An Improved Eulerian Approach for the Finite Time Lyapunov Exponent
    You, Guoqiao
    Leung, Shingyu
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1407 - 1435
  • [9] UNCERTAINTY IN FINITE-TIME LYAPUNOV EXPONENT COMPUTATIONS
    Balasuriya, Sanjeeva
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2020, 7 (02): : 313 - 337
  • [10] Visual Analysis of the Finite-Time Lyapunov Exponent
    Sagrista, Antoni
    Jordan, Stefan
    Sadlo, Filip
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 331 - 342