Heat kernel estimates and the Green functions on multiplier Hermitian manifolds

被引:7
作者
Mabuchi, T [1 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.2748/tmj/1113247566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a standard technique of Li and Yau, we study heat kernel estimates for a special type of compact conformally Kahler manifold, called a multiplier Hermitian manifold of type sigma, which we derive from a Hamiltonian holomorphic vector field on the manifold. In particular, we obtain a lower bound estimate for the Green function averaged by the associated group action. For a fixed or, such an estimate is known to play a crucial role in the proof of the uniqueness, modulo a group action, of Einstein multiplier Hermitian structures on a given Fano manifold.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 17 条
[2]  
Bando S., 1987, Adv. Stud. Pure Math., V10, P11
[3]  
BOURGUIGNON JP, 1978, ASTERISQUE, V58
[5]   HYPERCONTRACTIVITY AND SPECTRAL GAP OF SYMMETRICAL DIFFUSIONS WITH APPLICATIONS TO THE STOCHASTIC ISING-MODELS [J].
DEUSCHEL, JD ;
STROOCK, DW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 92 (01) :30-48
[6]  
Futaki A., 1988, LECT NOTES MATH, V1314
[7]   SPECTRAL CONVERGENCE OF RIEMANNIAN-MANIFOLDS [J].
KASUE, A ;
KUMURA, H .
TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (02) :147-179
[8]  
Kobayashi S., 1972, ERGEB MATH GRENZGEB, V70
[9]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[10]  
Lichnerowicz A., 1958, TRAVAUX RECHERCHES M, VIII