MicroBubble activated acoustic cell sorting

被引:35
作者
Faridi, M. A. [1 ]
Ramachandraiah, H. [1 ]
Iranmanesh, I. [1 ,2 ]
Grishenkov, D. [3 ]
Wiklund, M. [2 ]
Russom, A. [1 ]
机构
[1] KTH Royal Inst Technol, Sci Life Lab, Div Prote & Nanobiotechnol, Stockholm, Sweden
[2] KTH Royal Inst Technol, Sch Engn Sci, Dept Appl Phys, Stockholm, Sweden
[3] KTH Royal Inst Technol, Sch Technol & Hlth, Dept Med Engn, Stockholm, Sweden
关键词
Cell sorting; Acoustophoresis; Microbubble; Contrast agent; Microfluidic separation; STANDING-WAVE; PARTICLE SEPARATION; CONTRAST PARTICLES; FLOW; ULTRASOUND; ACOUSTOPHORESIS; CAPTURE; FORCE;
D O I
10.1007/s10544-017-0157-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Acoustophoresis, the ability to acoustically manipulate particles and cells inside a microfluidic channel, is a critical enabling technology for cell-sorting applications. However, one of the major impediments for routine use of acoustophoresis at clinical laboratory has been the reliance on the inherent physical properties of cells for separation. Here, we present a microfluidic-based microBubble-Activated Acoustic Cell Sorting (BAACS) method that rely on the specific binding of target cells to microbubbles conjugated with specific antibodies on their surface for continuous cell separation using ultrasonic standing wave. In acoustophoresis, cells being positive acoustic contrast particles migrate to pressure nodes. On the contrary, air-filled polymer-shelled microbubbles being strong negative acoustic contrast particles migrate to pressure antinodes and can be used to selectively migrate target cells. As a proof of principle, we demonstrate the separation of cancer cell line in a suspension with better than 75% efficiency. Moreover, 100% of the microbubble-cell conjugates migrated to the anti-node. Hence a better upstream affinity-capture has the potential to provide higher sorting efficiency. The BAACS technique expands the acoustic cell manipulation possibilities and offers cell-sorting solutions suited for applications at point of care.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping [J].
Augustsson, Per ;
Karlsen, Jonas T. ;
Su, Hao-Wei ;
Bruus, Henrik ;
Voldman, Joel .
NATURE COMMUNICATIONS, 2016, 7
[2]   Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis [J].
Augustsson, Per ;
Magnusson, Cecilia ;
Nordin, Maria ;
Lilja, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2012, 84 (18) :7954-7962
[3]   Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane [J].
Barnkob, Rune ;
Augustsson, Per ;
Laurell, Thomas ;
Bruus, Henrik .
PHYSICAL REVIEW E, 2012, 86 (05)
[4]   Acoustofluidics 7: The acoustic radiation force on small particles [J].
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (06) :1014-1021
[5]   Forthcoming Lab on a Chip tutorial series on acoustofluidics: Acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation [J].
Bruus, Henrik ;
Dual, Jurg ;
Hawkes, Jeremy ;
Hill, Martyn ;
Laurell, Thomas ;
Nilsson, Johan ;
Radel, Stefan ;
Sadhal, Satwindar ;
Wiklund, Martin .
LAB ON A CHIP, 2011, 11 (21) :3579-3580
[6]   Stable polymeric microballoons as multifunctional device for biomedical uses: Synthesis and characterization [J].
Cavalieri, F ;
El Hamassi, A ;
Chiessi, E ;
Paradossi, G .
LANGMUIR, 2005, 21 (19) :8758-8764
[7]   Elastomeric Negative Acoustic Contrast Particles for Affinity Capture Assays [J].
Cushing, Kevin W. ;
Piyasena, Menake E. ;
Carroll, Nick J. ;
Maestas, Gian C. ;
Lopez, Beth Ann ;
Edwards, Bruce S. ;
Graves, Steven W. ;
Lopez, Gabriel P. .
ANALYTICAL CHEMISTRY, 2013, 85 (04) :2208-2215
[8]   Inertial microfluidics [J].
Di Carlo, Dino .
LAB ON A CHIP, 2009, 9 (21) :3038-3046
[9]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
[10]  
2-7