Optimal Heat Transfer Criterion and Inclination Angle Effects on Non-boiling Regime Spray Cooling

被引:0
|
作者
Guo, Yong-xian [1 ]
Zhou, Zhi-fu [2 ]
Jia, Jian-yuan [1 ]
Zhou, Shao-rong [3 ]
机构
[1] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] Intel Asia Pacific Res & Dev Ltd, Shanghai 200241, Peoples R China
来源
TWENTY-FIFTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM | 2009年
关键词
Spray cooling; Inclination; CHF; Optimal distance; FLUX; SURFACES;
D O I
10.1145/1543834.1543862
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on the maximum CHF (critical heat flux) criterion, an optimal heat transfer criterion, which is called H criterion, was proposed. Experimental apparatuses were conducted. Distilled water was used as the working fluid. Three different DANFOSS nozzles with cone angles being 54 degrees, 50 degrees and 54 degrees respectively were used to cool a 30x30mm(2) square copper surface. Experimental results indicated that the volumetric fluxes were proportioned to P-0.5, where P is the pressure drop across the nozzles. The optimal distance between the nozzles and the heated surface were derived. The results indicated that the optimal heat transfer appeared while the outside of the impellent thin spray film inscribed in the square heated surface. Based on the H criterion aforementioned, two DANFOSS nozzles of the three were used to study the temperature distribution of the heated surface experimentally while there were spray inclination angles. Distilled water was also used impacting on the 30x30mm(2) square copper surface aforementioned and a circular heated copper surface with diameters being 30mm respectively. The heat flux of the surface was kept in constant (about 26-35 W/cm(2)). The inclination angles were 0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees and 50 degrees respectively. Experimental results indicated that the grads of the temperature of the surface increases first and then decreases with the increase of the inclination angle.
引用
收藏
页码:193 / +
页数:2
相关论文
empty
未找到相关数据