Ultra High Content Image Analysis and Phenotype Profiling of 3D Cultured Micro-Tissues

被引:33
作者
Di, Zi [1 ]
Klop, Maarten J. D. [2 ]
Rogkoti, Vasiliki-Maria [1 ]
Le Devedec, Sylvia E. [1 ]
van de Water, Bob [1 ]
Verbeek, Fons J. [3 ]
Price, Leo S. [1 ,2 ]
Meerman, John H. N. [1 ]
机构
[1] Leiden Univ, Leiden Acad Ctr Drug Res, Div Toxicol, Leiden, Netherlands
[2] OcellO BV, Bio Partner Ctr Leiden, Leiden, Netherlands
[3] Leiden Univ, Leiden Inst Adv Comp Sci, Leiden, Netherlands
来源
PLOS ONE | 2014年 / 9卷 / 10期
关键词
CANCER CELL-LINES; BREAST-CANCER; MODELS; RECOGNITION; DISCOVERY; NETWORKS; SUBTYPES; SCREENS;
D O I
10.1371/journal.pone.0109688
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many situations, 3D cell cultures mimic the natural organization of tissues more closely than 2D cultures. Conventional methods for phenotyping such 3D cultures use either single or multiple simple parameters based on morphology and fluorescence staining intensity. However, due to their simplicity many details are not taken into account which limits system-level study of phenotype characteristics. Here, we have developed a new image analysis platform to automatically profile 3D cell phenotypes with 598 parameters including morphology, topology, and texture parameters such as wavelet and image moments. As proof of concept, we analyzed mouse breast cancer cells (4T1 cells) in a 384-well plate format following exposure to a diverse set of compounds at different concentrations. The result showed concentration dependent phenotypic trajectories for different biologically active compounds that could be used to classify compounds based on their biological target. To demonstrate the wider applicability of our method, we analyzed the phenotypes of a collection of 44 human breast cancer cell lines cultured in 3D and showed that our method correctly distinguished basal-A, basal-B, luminal and ERBB2+ cell lines in a supervised nearest neighbor classification method.
引用
收藏
页数:10
相关论文
共 33 条
  • [1] [Anonymous], STAT PATTERN RECOGNI
  • [2] [Anonymous], 2000, Pattern Classification
  • [3] Quantitative morphological signatures define local signaling networks regulating cell morphology
    Bakal, Chris
    Aach, John
    Church, George
    Perrimon, Norbert
    [J]. SCIENCE, 2007, 316 (5832) : 1753 - 1756
  • [4] Integrated profiling of three dimensional cell culture models and 3D microscopy
    Bilgin, Cemal Cagatay
    Kim, Sun
    Leung, Elle
    Chang, Hang
    Parvin, Bahram
    [J]. BIOINFORMATICS, 2013, 29 (23) : 3087 - 3093
  • [5] Statistical methods for analysis of high-throughput RNA interference screens
    Birmingham, Amanda
    Selfors, Laura M.
    Forster, Thorsten
    Wrobel, David
    Kennedy, Caleb J.
    Shanks, Emma
    Santoyo-Lopez, Javier
    Dunican, Dara J.
    Long, Aideen
    Kelleher, Dermot
    Smith, Queta
    Beijersbergen, Roderick L.
    Ghazal, Peter
    Shamu, Caroline E.
    [J]. NATURE METHODS, 2009, 6 (08) : 569 - 575
  • [6] Cao L, 2011, LECT N BIOINFORMAT, V7036, P330, DOI 10.1007/978-3-642-24855-9_29
  • [7] CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    Carpenter, Anne E.
    Jones, Thouis Ray
    Lamprecht, Michael R.
    Clarke, Colin
    Kang, In Han
    Friman, Ola
    Guertin, David A.
    Chang, Joo Han
    Lindquist, Robert A.
    Moffat, Jason
    Golland, Polina
    Sabatini, David M.
    [J]. GENOME BIOLOGY, 2006, 7 (10)
  • [8] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [9] Modelling glandular epithelial cancers in three-dimensional cultures
    Debnath, J
    Brugge, JS
    [J]. NATURE REVIEWS CANCER, 2005, 5 (09) : 675 - 688
  • [10] EFFICIENT ALGORITHM FOR A COMPLETE LINK METHOD
    DEFAYS, D
    [J]. COMPUTER JOURNAL, 1977, 20 (04) : 364 - 366