New Genuinely Multipartite Entanglement

被引:34
作者
Luo, Ming-Xing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
entangled sources; genuinely multipartite nonlocality; permutationally symmetric states; quantum entanglement; quantum network; QUANTUM CRYPTOGRAPHY; NONLOCALITY;
D O I
10.1002/qute.202000123
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum entanglement as one of the important resources has been verified by using different local models. There is no efficient method to verify single multipartite entanglement that is not generated by multisource quantum networks with local operations and shared randomness. The goal in this work is to solve this problem. First, a new local model is proposed for describing all the states that can be generated by using distributed entangled states and shared randomness without classical communication. This model is stronger than the biseparable model and implies new genuinely multipartite entanglement. With the present local model it is proved that all the permutationally symmetric entangled pure states are new genuinely multipartite entanglement. It is further proved that the new feature holds for all the multipartite entangled pure states in the biseparable model with the dimensions of local systems being not larger than three. The new multipartite entanglement is also robust against general noises. Finally, a simple Bell inequality is provided to verify new genuinely multipartite entangled pure qubit states in the present model. The results show new insight into featuring the genuinely multipartite entanglement in the distributive scenarios.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Multipartite-entanglement monotones and polynomial invariants [J].
Eltschka, Christopher ;
Bastin, Thierry ;
Osterloh, Andreas ;
Siewert, Jens .
PHYSICAL REVIEW A, 2012, 85 (02)
[32]   Genuine multipartite entanglement measure based on α-concurrence [J].
Wang, Ke-Ke ;
Wei, Zhi-Wei ;
Fei, Shao-Ming .
EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (05)
[33]   Topology of entanglement in multipartite states with translational invariance [J].
Cui, Hai-Tao ;
Tian, Jun-Long ;
Wang, Chun-Ming ;
Chen, Yong-Chao .
EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (07)
[34]   Two computable sets of multipartite entanglement measures [J].
Hiesmayr, Beatrix C. ;
Huber, Marcus ;
Krammer, Philipp .
PHYSICAL REVIEW A, 2009, 79 (06)
[35]   Classical statistical mechanics approach to multipartite entanglement [J].
Facchi, P. ;
Florio, G. ;
Marzolino, U. ;
Parisi, G. ;
Pascazio, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (22)
[36]   Distillation of multipartite entanglement by local filtering operations [J].
Huang, Yi-Sheng ;
Xing, Hai-Bo ;
Yang, Ming ;
Yang, Qing ;
Song, Wei ;
Cao, Zhuo-Liang .
PHYSICAL REVIEW A, 2014, 89 (06)
[37]   Characterizing multipartite entanglement by violation of CHSH inequalities [J].
Ming Li ;
Huihui Qin ;
Chengjie Zhang ;
Shuqian Shen ;
Shao-Ming Fei ;
Heng Fan .
Quantum Information Processing, 2020, 19
[38]   Measurement-based multipartite entanglement inflation [J].
Halder, Pritam ;
Mal, Shiladitya ;
Sen, Aditi .
PHYSICAL REVIEW A, 2021, 104 (06)
[39]   A Note on the Relationship Between Genuinely Coherence and Generalized Entanglement Monotones [J].
Jiahuan Qiao ;
Zong Wang ;
Jing Wang ;
Ming Li ;
Shuqian Shen ;
Zhihao Ma .
International Journal of Theoretical Physics, 2019, 58 :3998-4007
[40]   Lorentz invariance of entanglement classes in multipartite systems [J].
Huber, M. ;
Friis, N. ;
Gabriel, A. ;
Spengler, C. ;
Hiesmayr, B. C. .
EPL, 2011, 95 (02)