New Genuinely Multipartite Entanglement

被引:34
作者
Luo, Ming-Xing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
entangled sources; genuinely multipartite nonlocality; permutationally symmetric states; quantum entanglement; quantum network; QUANTUM CRYPTOGRAPHY; NONLOCALITY;
D O I
10.1002/qute.202000123
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum entanglement as one of the important resources has been verified by using different local models. There is no efficient method to verify single multipartite entanglement that is not generated by multisource quantum networks with local operations and shared randomness. The goal in this work is to solve this problem. First, a new local model is proposed for describing all the states that can be generated by using distributed entangled states and shared randomness without classical communication. This model is stronger than the biseparable model and implies new genuinely multipartite entanglement. With the present local model it is proved that all the permutationally symmetric entangled pure states are new genuinely multipartite entanglement. It is further proved that the new feature holds for all the multipartite entangled pure states in the biseparable model with the dimensions of local systems being not larger than three. The new multipartite entanglement is also robust against general noises. Finally, a simple Bell inequality is provided to verify new genuinely multipartite entangled pure qubit states in the present model. The results show new insight into featuring the genuinely multipartite entanglement in the distributive scenarios.
引用
收藏
页数:9
相关论文
共 61 条
[41]   Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks [J].
Luo, Ming-Xing .
PHYSICAL REVIEW LETTERS, 2018, 120 (14)
[42]   Quantum cryptography with imperfect apparatus [J].
Mayers, D ;
Yao, A .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :503-509
[43]   EXTREME QUANTUM ENTANGLEMENT IN A SUPERPOSITION OF MACROSCOPICALLY DISTINCT STATES [J].
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1990, 65 (15) :1838-1840
[44]  
Navascues M., 2020, ARXIV200202773
[45]   The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics [J].
Oppenheim, Jonathan ;
Wehner, Stephanie .
SCIENCE, 2010, 330 (6007) :1072-1074
[46]  
Ostrowski A.M.:., 1951, Compositio Math, V9, P209
[47]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[48]   Genuine Quantum Nonlocality in the Triangle Network [J].
Renou, Marc-Olivier ;
Baumer, Elisa ;
Boreiri, Sadra ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Beigi, Salman .
PHYSICAL REVIEW LETTERS, 2019, 123 (14)
[49]   Limits on Correlations in Networks for Quantum and No-Signaling Resources [J].
Renou, Marc-Olivier ;
Wang, Yuyi ;
Boreiri, Sadra ;
Beigi, Salman ;
Gisin, Nicolas ;
Brunner, Nicolas .
PHYSICAL REVIEW LETTERS, 2019, 123 (07)
[50]   Nonlinear Bell Inequalities Tailored for Quantum Networks [J].
Rosset, Denis ;
Branciard, Cyril ;
Barnea, Tomer Jack ;
Puetz, Gilles ;
Brunner, Nicolas ;
Gisin, Nicolas .
PHYSICAL REVIEW LETTERS, 2016, 116 (01)