A generalized q growth model based on nonadditive entropy

被引:3
作者
Rondon, Irving [1 ]
Sotolongo-Costa, Oscar [2 ]
Gonzalez, Jorge A. [3 ]
Lee, Jooyoung [1 ]
机构
[1] Korea Inst Adv Study, Sch Computat Sci, Ctr Sil Prot Sci, Seoul 02455, South Korea
[2] Unive Autonoma Estado Morelos, Cuernavaca 62209, Morelos, Mexico
[3] Florida Int Univ, Dept Phys, Miami, FL 33199 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2020年 / 34卷 / 29期
基金
新加坡国家研究基金会;
关键词
Nonlinear dynamics; entropy; growth laws; pandemic modeling; COVID-19; BREAST-CANCER; TUMOR; SELECTION;
D O I
10.1142/S0217979220502811
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a general growth model based on nonextensive statistical physics. We show that the most common unidimensional growth laws such as power law, exponential, logistic, Richards, Von Bertalanffy, Gompertz can be obtained. This model belongs to a particular case reported in (Physica A 369, 645 (2006)). The new evolution equation resembles the "universality" revealed by West for ontogenetic growth (Nature 413, 628 (2001)). We show that for early times the model follows a power law growth as N(t) approximate to t(D), where the exponent D equivalent to 1/1-q classifies different types of growth. Several examples are given and discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] An empirical Q-matrix validation method for the sequential generalized DINA model
    Ma, Wenchao
    de la Torre, Jimmy
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2020, 73 (01) : 142 - 163
  • [32] A nonextensive wavelet (q, q′)-entropy for 1/fα signals
    Ramirez-Pacheco, J.
    Rizo-Dominguez, L.
    Trejo-Sanchez, J. A.
    Cortez-Gonzalez, J.
    REVISTA MEXICANA DE FISICA, 2016, 62 (03) : 229 - 234
  • [33] CHAOS, ENTROPY AND A GENERALIZED EXTENSION PRINCIPLE
    DIAMOND, P
    POKROVSKII, A
    FUZZY SETS AND SYSTEMS, 1994, 61 (03) : 277 - 283
  • [34] On Generalized Measures of Entropy for Fuzzy Sets
    Arora, Priya
    Tomar, V. P.
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 385 - 395
  • [35] Generalized Maximum Entropy for Supervised Classification
    Mazuelas, Santiago
    Shen, Yuan
    Perez, Aritz
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (04) : 2530 - 2550
  • [36] Generalized maximum-entropy sampling
    Lee, Jon
    Lind, Joy
    INFOR, 2020, 58 (02) : 168 - 181
  • [37] An Evaluation Model for Public Opinion Formation Based on Entropy
    Jia Fan
    Xie Di
    INTERNATIONAL CONFERENCE OF CHINA COMMUNICATION (ICCC2010), 2010, : 339 - +
  • [38] A decision model based on expected utility, entropy and variance
    Brito, Irene
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 379 (379)
  • [39] Model and application of the logistics optimized assessment based on entropy
    Bai, FL
    Gao, RX
    Zhang, CB
    Wang, HL
    PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 280 - 286
  • [40] An entropy model for artificial grammar learning
    Pothos, Emmanuel M.
    FRONTIERS IN PSYCHOLOGY, 2010, 1