View synthesis-based light field image compression using a generative adversarial network

被引:29
作者
Liu, Deyang [1 ,2 ]
Huang, Xinpeng [3 ]
Zhan, Wenfa [1 ,2 ]
Ai, Liefu [1 ,2 ]
Zheng, Xin [1 ,2 ]
Cheng, Shulin [1 ,2 ]
机构
[1] Anqing Normal Univ, Anqing, Peoples R China
[2] Anqing Normal Univ, Univ Key Lab Intelligent Percept & Comp Anhui Pro, Anqing, Peoples R China
[3] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Light field image; Image compression; Generative adversarial network; View synthesis; Deep learning; HEVC;
D O I
10.1016/j.ins.2020.07.073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Light field (LF) imaging has generated considerable interest owing to its ability to capture both spatial and angular information of light rays simultaneously. However, the extremely large volume of data associated with LF imaging poses challenges to both data storage and transmission. This study addresses this issue by proposing a view synthesis-based LF image compression method using a generative adversarial network (GAN). The primary basis of compression relies on the fact that adjacent sub-aperture images (SAIs) are highly correlated. Accordingly, only sparsely sampled SAIs are transmitted and the others are reconstructed at the decoder side. The proposed sparse SAI sampling method enhances the quality of reconstructed SAIs by considering a fair trade-off between the number of SAIs available for use as priors in the synthesis process and SAI redundancy. The quality of reconstructed SAIs is further enhanced by a GAN-based SAI synthesis method, where the synthesis procedure is broken into disparity estimation and un-sampled SAI estimation components, and the adversarial nature of the jointly trained generative and discriminative networks results in a more accurate generative model. Furthermore, more texture details can be preserved in the synthesized SAIs by adopting a loss function in the GAN model based on perceptual quality. Extensive experimental results demonstrate the superiority of the proposed method relative to several other state-of-the-art compression methods in terms of standard quality metrics and the perceptual quality of the synthetic SAIs at the decoder side. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 131
页数:14
相关论文
共 50 条
  • [21] Light field image coding using a residual channel attention network-based view synthesis
    Liu, Faguo
    Zhang, Qian
    Yan, Tao
    Wang, Bin
    Gao, Ying
    Hou, Jiaqi
    Yuan, Feiniu
    DATA TECHNOLOGIES AND APPLICATIONS, 2024, 58 (04) : 652 - 668
  • [22] Constrained adversarial loss for generative adversarial network-based faithful image restoration
    Kim, Dong-Wook
    Chung, Jae-Ryun
    Kim, Jongho
    Lee, Dae Yeol
    Jeong, Se Yoon
    Jung, Seung-Won
    ETRI JOURNAL, 2019, 41 (04) : 415 - 425
  • [23] A survey on generative adversarial network-based text-to-image synthesis
    Zhou, Rui
    Jiang, Cong
    Xu, Qingyang
    NEUROCOMPUTING, 2021, 451 : 316 - 336
  • [24] Appearance and shape based image synthesis by conditional variational generative adversarial network
    Chen, Ying
    Xia, Shixiong
    Zhao, Jiaqi
    Zhou, Yong
    Niu, Qiang
    Yao, Rui
    Zhu, Dongjun
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [25] Low-Light Image Enhancement Based on Cascaded Residual Generative Adversarial Network
    Chen Qingjiang
    Qu Mei
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [26] Generation of High-Quality Image Using Generative Adversarial Network
    Sun, Yitao
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [27] Image Motion Blur Removal Algorithm Based on Generative Adversarial Network
    Kim, Jongchol
    Kim, Myongchol
    Kim, Insong
    Han, Gyongwon
    Jong, Myonghak
    Ri, Gwuangwon
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (05) : 403 - 415
  • [28] Poststack Seismic Data Compression Using a Generative Adversarial Network
    dos Santos Ribeiro, Kevyn Swhants
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    Cruz E Silva, Pedro Mario
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [30] Geometry-aware view reconstruction network for light field image compression
    Zhang, Youzhi
    Wan, Lifei
    Mao, Yifan
    Huang, Xinpeng
    Liu, Deyang
    SCIENTIFIC REPORTS, 2022, 12 (01):