Random partitions in statistical mechanics

被引:7
作者
Ercolani, Nicholas M. [1 ]
Jansen, Sabine [2 ]
Ueltschi, Daniel [3 ]
机构
[1] Univ Arizona, Tucson, AZ 85721 USA
[2] Ruhr Univ Bochum, Bochum, Germany
[3] Univ Warwick, Coventry CV4 7AL, W Midlands, England
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2014年 / 19卷
基金
英国工程与自然科学研究理事会;
关键词
Spatial random partitions; Bose-Einstein condensation; (inhomogeneous) zero-range process; chain of Chinese restaurants; sums of independent random variables; heavy-tailed variables; infinitely divisible laws; SPATIAL RANDOM PERMUTATIONS; COMBINATORIAL PARTITIONS; ASYMPTOTIC-BEHAVIOR; BOSE-GAS; LIMIT; CONDENSATION; COAGULATION; DISTRIBUTIONS; STATIONARY; MODELS;
D O I
10.1214/EJP.v19-3244
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a family of distributions on spatial random partitions that provide a coupling between different models of interest: the ideal Bose gas; the zero-range process; particle clustering; and spatial permutations. These distributions are invariant for a "chain of Chinese restaurants" stochastic process. We obtain results for the distribution of the size of the largest component.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] An asymptotical study of combinatorial optimization problems by means of statistical mechanics
    Albrecher, H
    Burkard, RE
    Çela, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 186 (01) : 148 - 162
  • [42] Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems
    Gogolin, Christian
    Eisert, Jens
    REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (05)
  • [43] Roles of statistical mechanics in determining the density profile of mild relaxation
    Kang, Dong-Biao
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 717 - 725
  • [44] Statistical mechanics of semi-supervised clustering in sparse graphs
    Steeg, Greg Ver
    Galstyan, Aram
    Allahverdyan, Armen E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [45] Statistical Mechanics of On-Line Learning Under Concept Drift
    Straat, Michiel
    Abadi, Fthi
    Goepfert, Christina
    Hammer, Barbara
    Biehl, Michael
    ENTROPY, 2018, 20 (10)
  • [46] Statistical mechanics for metabolic networks during steady state growth
    De Martino, Daniele
    Andersson, Anna M. C.
    Bergmiller, Tobias
    Guet, Calin C.
    Tkacik, Gasper
    NATURE COMMUNICATIONS, 2018, 9
  • [47] The statistical mechanics of the coagulation-diffusion process with a stochastic reset
    Durang, Xavier
    Henkel, Malte
    Park, Hyunggyu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
  • [48] Statistical mechanics of dimers on quasiperiodic Ammann-Beenker tilings
    Lloyd, Jerome
    Biswas, Sounak
    Simon, Steven H.
    Parameswaran, S. A.
    Flicker, Felix
    PHYSICAL REVIEW B, 2022, 106 (09)
  • [49] Beyond Boltzmann-Gibbs statistical mechanics in optical lattices
    Lutz, Eric
    Renzoni, Ferruccio
    NATURE PHYSICS, 2013, 9 (10) : 615 - 619
  • [50] Boltzmann Configurational Entropy Revisited in the Framework of Generalized Statistical Mechanics
    Scarfone, Antonio Maria
    ENTROPY, 2022, 24 (02)