Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive

被引:231
作者
Wang, Renheng [1 ,3 ]
Li, Xinhai [2 ]
Wang, Zhixing [2 ]
Zhang, Han [1 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium ion battery; Graphite; Non-aqueous electrolyte; Electrolyte additive; p-Toluenesulfonyl isocyanate; PERFORMANCE IMPROVEMENT; GRAPHITE ANODE; FLUOROETHYLENE CARBONATE; ELEVATED-TEMPERATURES; INTERCALATION; REACTIVITY; CAPACITY; CELLS; SEI; COMPATIBILITY;
D O I
10.1016/j.nanoen.2017.02.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium plating and dendrite formation can occur on the graphite surface at high current densities. What is more, graphite generates a 10% volume change during cycling, resulting in a solid electrolyte interface (SEI) crack and further electrolyte decomposition. Here, p-Toluenesulfonyl isocyanate (PTSI) as an electrolyte additive is evaluated to overcome the above problem of Li/graphite cells. The results show that the cycling capacity of Li/graphite cell with 0.5 wt% PTSI is effectively enhanced at high current densities. Remarkably, we find that a stable SEI film derived from PTSI is generated on the graphite surface. The SEI film can obviously inhibit the reductive decomposition of electrolyte, electrode erosion and LiF formation upon cycling. This additive will provide new avenues for the rational engineering of advanced Li-ion batteries.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 44 条
[1]   Long-Term Lithium-Ion Battery Performance Improvement via Ultraviolet Light Treatment of the Graphite Anode [J].
An, Seong Jin ;
Li, Jianlin ;
Sheng, Yangping ;
Daniel, Claus ;
Wood, David L., III .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) :A2866-A2875
[2]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[3]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[4]   Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy:: Experimental and theoretical study [J].
Dedryvère, R ;
Gireaud, L ;
Grugeon, S ;
Laruelle, S ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :15868-15875
[5]   Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery [J].
Dedryvere, R. ;
Foix, D. ;
Franger, S. ;
Patoux, S. ;
Daniel, L. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (24) :10999-11008
[6]   Improved compatibility of graphite anode for lithium ion battery using sulfuric esters [J].
Ding, Zhiying ;
Li, Xuecheng ;
Wei, Tingru ;
Yin, Zhoulan ;
Li, Xinhai .
ELECTROCHIMICA ACTA, 2016, 196 :622-628
[7]   Dithiocarbonic anhydride (CS2) -: a new additive in Li-ion battery electrolytes [J].
Ein-Eli, Y .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 531 (01) :95-99
[8]   The role of SO2 as an additive to organic Li-ion battery electrolytes [J].
EinEli, Y ;
Thomas, SR ;
Koch, VR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1159-1165
[9]   Clinical Significance of Preoperative Neutrophil Lymphocyte Ratio versus Platelet Lymphocyte Ratio in Patients with Small Cell Carcinoma of the Esophagus [J].
Feng, Ji-Feng ;
Huang, Ying ;
Zhao, Qiang ;
Chen, Qi-Xun .
SCIENTIFIC WORLD JOURNAL, 2013,
[10]   Ac impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite [J].
Funabiki, A ;
Inaba, M ;
Ogumi, Z .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :227-231