PRECIPITATION ESTIMATION FROM FY-3D MICROWAVE RADIATION IMAGER USING DEEP LEARNING

被引:0
作者
Liu, Kangwen [1 ,2 ]
He, Jieying [1 ]
Chen, Haonan [3 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Colorado State Univ, Ft Collins, CO 80523 USA
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
Quantitative Precipitation Estimation; Satellite; Passive Microwave; Deep Learning; FY-3D/MWRI;
D O I
10.1109/IGARSS46834.2022.9883416
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper develops a novel deep learning-based model for quantitative precipitation estimation (QPE). In this model, the multi-channel microwave Brightness Temperature (TBV and TBH) and Polarization Difference (PD = TBV - TBH) from the Microwave Radiation Imager (MWRI) aboard the FY-3D satellite are used as predictor variables for QPE. An observational database built from the Integrated Multisatellite Retrievals for GPM (IMERG) is employed as reference to train the deep learning model. In order to assess the model performance, an independent test dataset is used, and the results show that the model is computationally efficient and the derived QPE is highly consistent with IMERG product. The encouraging results also indicate that PD can enhance the precipitation estimation performance compared to using the TB only.
引用
收藏
页码:6590 / 6593
页数:4
相关论文
共 14 条
  • [1] Beucler Tom, MACHINE LEARNING CLO
  • [2] MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System
    Boukabara, Sid-Ahmed
    Garrett, Kevin
    Chen, Wanchun
    Iturbide-Sanchez, Flavio
    Grassotti, Christopher
    Kongoli, Cezar
    Chen, Ruiyue
    Liu, Quanhua
    Yan, Banghua
    Weng, Fuzhong
    Ferraro, Ralph
    Kleespies, Thomas J.
    Meng, Huan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (09): : 3249 - 3272
  • [3] Deep Learning for Bias Correction of Satellite Retrievals of Orographic Precipitation
    Chen, Haonan
    Sun, Luyao
    Cifelli, Robert
    Xie, Pingping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] A Machine Learning System for Precipitation Estimation Using Satellite and Ground Radar Network Observations
    Chen, Haonan
    Chandrasekar, V
    Cifelli, Robert
    Xie, Pingping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 982 - 994
  • [5] Rainfall Estimation From Ground Radar and TRMM Precipitation Radar Using Hybrid Deep Neural Networks
    Chen, Haonan
    Chandrasekar, V
    Tan, Haiming
    Cifelli, Robert
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (17-18) : 10669 - 10678
  • [6] Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau
    Cui, Yaokui
    Long, Di
    Hong, Yang
    Zeng, Chao
    Zhou, Jie
    Han, Zhongying
    Liu, Ronghua
    Wan, Wei
    [J]. JOURNAL OF HYDROLOGY, 2016, 543 : 242 - 254
  • [7] Microwave radiative transfer with nonspherical precipitating hydrometeors
    Czekala, H
    Simmer, C
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1998, 60 (03) : 365 - 374
  • [8] THE GLOBAL PRECIPITATION MEASUREMENT MISSION
    Hou, Arthur Y.
    Kakar, Ramesh K.
    Neeck, Steven
    Azarbarzin, Ardeshir A.
    Kummerow, Christian D.
    Kojima, Masahiro
    Oki, Riko
    Nakamura, Kenji
    Iguchi, Toshio
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (05) : 701 - +
  • [9] Kidd C, 2019, EXTREME HYDROCLIMATIC EVENTS AND MULTIVARIATE HAZARDS IN A CHANGING ENVIRONMENT: A REMOTE SENSING APPROACH, P3, DOI 10.1016/B978-0-12-814899-0.00001-8
  • [10] Kummerow C, 2001, J APPL METEOROL, V40, P1801, DOI 10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO