The ρ-variation as an operator between maximal operators and singular integrals

被引:43
作者
Crescimbeni, R. [1 ]
Macias, R. A. [2 ]
Menarguez, T. [3 ]
Torrea, J. L. [4 ]
Viviani, B. [2 ]
机构
[1] Univ Nacl Comahue, Dept Matemat, Fac Econ & Adm, RA-8300 Buenos Aires, Neuquen, Argentina
[2] Univ Nacl Litoral, IMAL FIQ, RA-3000 Guemes, Santa Fe, Argentina
[3] Univ Politecn Madrid, Dept Matemat, ETS Caminos Canales & Puertos, E-28040 Madrid, Spain
[4] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
关键词
Oscillation; rho-variation; Heat and Poisson semigroups; VARIATION INEQUALITIES; OSCILLATION; EXPANSIONS; HERMITE;
D O I
10.1007/s00028-009-0003-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The rho-variation and the oscillation of the heat and Poisson semigroups of the Laplacian and Hermite operators (i.e. Delta and -Delta + vertical bar x vertical bar(2)) are proved to be bounded from L p(R-n, w(x)dx) into itself (from L-1(R-n, w(x)dx) into weak-L-1(R-n, w(x)dx) in the case p = 1) for 1 <= p < infinity and w being a weight in the Muckenhoupt's A(p) class. In the case p = infinity it is proved that these operators do not map L-infinity into itself. Even more, they map L-infinity into BMO but the range of the image is strictly smaller that the range of a general singular integral operator.
引用
收藏
页码:81 / 102
页数:22
相关论文
共 9 条
[1]   Hermite function expansions versus Hermite polynomial expansions [J].
Abu-Falahah, I. ;
Torrea, J. L. .
GLASGOW MATHEMATICAL JOURNAL, 2006, 48 :203-215
[2]  
[Anonymous], 1970, ANN MATH STUD
[3]  
[Anonymous], 1993, LECT HERMITE LAGUERR
[4]  
Campbell JT, 2000, DUKE MATH J, V105, P59
[5]   Oscillation in ergodic theory [J].
Jones, RL ;
Kaufman, R ;
Rosenblatt, JM ;
Wierdl, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :889-935
[6]  
Jones RL, 2001, ERGOD THEOR DYN SYST, V21, P1809
[7]  
JONES RL, STRONG VARIATIONAL J
[8]  
Jones RL, 2006, CONTEMP MATH, V411, P89
[9]   POISSON INTEGRALS FOR HERMITE AND LAGUERRE EXPANSIONS [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) :231-+