Local-Global Minimum Property in Unconstrained Minimization Problems

被引:5
作者
Burai, Pal [1 ]
机构
[1] Tech Univ Berlin, Dept Math, D-10623 Berlin, Germany
基金
匈牙利科学研究基金会;
关键词
Nonlinear optimization; Non-convex optimization; First-order sufficient condition; Generalized convexity; Local-global minimum property; ARCWISE-CONNECTED FUNCTIONS;
D O I
10.1007/s10957-013-0432-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The main goal of this paper is to prove some new results and extend some earlier ones about functions, which possess the so-called local-global minimum property. In the last section, we show an application of these in the theory of calculus of variations.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 20 条
[1]  
Almansi E, 1898, ANN MAT PUR APPL, V12, P1
[2]  
[Anonymous], 1990, SYSTEMS CONTROL FDN
[3]  
[Anonymous], 2010, Graduate studies in Mathematics
[4]  
[Anonymous], 2007, BIRKHA USER, DOI DOI 10.1007/978-3-0348-0387-8
[5]   GENERALIZED ARCWISE-CONNECTED FUNCTIONS AND CHARACTERIZATIONS OF LOCAL-GLOBAL MINIMUM PROPERTIES [J].
AVRIEL, M ;
ZANG, I .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 32 (04) :407-425
[6]  
Avriel M., 1975, J OPTIM THEORY APPL, V16, P183
[7]  
Avriel M., 1976, J OPTIM THEORY APPL, V18, P555
[8]   Optimality conditions and duality involving arcwise connected and generalized arcwise connected functions [J].
Bhatia, D ;
Mehra, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 100 (01) :181-194
[9]  
Clarke F. H., 1983, CANADIAN MATH SOC SE
[10]  
Dacorogna B., 2009, INTRO CALCULUS VARIA