Endpoint contributions to excited-state modular Hamiltonians

被引:3
作者
Kabat, Daniel [1 ]
Lifschytz, Gilad [2 ,3 ]
Phuc Nguyen [1 ,2 ,3 ]
Sarkar, Debajyoti [4 ]
机构
[1] CUNY, Lehman Coll, Dept Phys & Astron, 250 Bedford Pk Blvd W, Bronx, NY 10468 USA
[2] Univ Haifa, Dept Math, Abba Khoushy Ave 199, IL-3498838 Haifa, Israel
[3] Univ Haifa, Haifa Res Ctr Theoret Phys & Astrophys, Abba Khoushy Ave 199, IL-3498838 Haifa, Israel
[4] Indian Inst Technol Indore, Discipline Phys, Khandwa Rd, Indore 453552, Madhya Pradesh, India
基金
以色列科学基金会; 美国国家科学基金会;
关键词
Conformal Field Theory; Field Theories in Higher Dimensions;
D O I
10.1007/JHEP12(2020)128
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute modular Hamiltonians for excited states obtained by perturbing the vacuum with a unitary operator. We use operator methods and work to first order in the strength of the perturbation. For the most part we divide space in half and focus on perturbations generated by integrating a local operator J over a null plane. Local operators with weight n >= 2 under vacuum modular flow produce an additional endpoint contribution to the modular Hamiltonian. Intuitively this is because operators with weight n >= 2 can move degrees of freedom from a region to its complement. The endpoint contribution is an integral of J over a null plane. We show this in detail for stress tensor perturbations in two dimensions, where the result can be verified by a conformal transformation, and for scalar perturbations in a CFT. This lets us conjecture a general form for the endpoint contribution that applies to any field theory divided into half-spaces.
引用
收藏
页数:28
相关论文
共 35 条
[1]   Some results on the shape dependence of entanglement and Renyi entropies [J].
Allais, Andrea ;
Mezei, Mark .
PHYSICAL REVIEW D, 2015, 91 (04)
[2]  
[Anonymous], ARXIV181105619
[3]  
[Anonymous], ARXIV181105052
[4]  
[Anonymous], ARXIV190501311
[5]   Modular Hamiltonian for holographic excited states [J].
Arias, Raul ;
Botta-Cantcheff, Marcelo ;
Martinez, Pedro J. ;
Zarate, Juan F. .
PHYSICAL REVIEW D, 2020, 102 (02)
[6]  
Balakrishnan S., ARXIV200200018
[7]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[8]   Bulk entanglement entropy for photons and gravitons in AdS3 [J].
Belin, Alexandre ;
Iqbal, Nabil ;
Kruthoff, Jorrit .
SCIPOST PHYSICS, 2020, 8 (05)
[9]   Bulk entanglement entropy in perturbative excited states [J].
Belin, Alexandre ;
Iqbal, Nabil ;
Lokhande, Sagar F. .
SCIPOST PHYSICS, 2018, 5 (03)
[10]  
Birrell ND, 1984, CAMBRIDGE MONOGRAPHS, DOI DOI 10.1017/CBO9780511622632