MANN-TYPE INERTIAL SUBGRADIENT EXTRAGRADIENT METHODS FOR BILEVEL EQUILIBRIUM PROBLEMS

被引:0
作者
Ceng, Lu-Chuan [1 ]
Zhu, Li -Jun [2 ]
Yao, Zhangsong [3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] North Minzu Univ, Key Lab Intelligent Informat & Big Data Proc NingX, Yinchuan 750021, Peoples R China
[3] Nanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Peoples R China
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2022年 / 84卷 / 04期
基金
中国国家自然科学基金;
关键词
inertial subgradient extragradient method; bilevel equilibrium problem; variational inclusions; fixed point; RECKONING FIXED-POINTS; VARIATIONAL-INEQUALITIES; STRONG-CONVERGENCE; ITERATION SCHEME; PROJECTION; ALGORITHM; MAPPINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze two Mann-type implicit inertial sub -gradient extragradient algorithms for solving the monotone bilevel equilibrium problem with a general system of variational inclusions and a common fixed-point problem of a finite family of strict pseudocontraction mappings and an asymptotically nonexpansive mapping constraints. Some strong convergence theorems for the proposed algorithms are established under the suitable assumptions.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 44 条
[1]  
Aubin J. P., 1984, APPL NONLINEAR ANAL
[2]  
Bigi G., 2019, Nonlinear Programming Techniques for Equilibria, DOI DOI 10.1007/978-3-030-00205-3
[3]   A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS [J].
Ceng, L. C. ;
Petrusel, A. ;
Qin, X. ;
Yao, J. C. .
FIXED POINT THEORY, 2020, 21 (01) :93-108
[4]   The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces [J].
Ceng, Lu-Chuan ;
Xu, Hong-Kun ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) :1402-1412
[5]   Hybrid Viscosity Approximation Methods for Systems of Variational Inequalities and Hierarchical Fixed Point Problems [J].
Ceng, Lu-Chuan ;
Wen, Ching-Feng ;
Yao, Jen-Chih ;
Yao, Yonghong .
FILOMAT, 2020, 34 (06) :1927-1947
[6]   Iterative Algorithms for a System of Variational Inclusions in Banach Spaces [J].
Ceng, Lu-Chuan ;
Postolache, Mihai ;
Yao, Yonghong .
SYMMETRY-BASEL, 2019, 11 (06)
[7]   Variational Inequalities Approaches to Minimization Problems with Constraints of Generalized Mixed Equilibria and Variational Inclusions [J].
Ceng, Lu-Chuan ;
Postolache, Mihai ;
Wen, Ching-Feng ;
Yao, Yonghong .
MATHEMATICS, 2019, 7 (03)
[8]   A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization [J].
Chang, Shih-sen ;
Lee, H. W. Joseph ;
Chan, Chi Kin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3307-3319
[9]   Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators [J].
Dadashi, Vahid ;
Postolache, Mihai .
ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (01) :89-99
[10]  
Dong QL, 2022, J NONLINEAR CONVEX A, V23, P591