Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo

被引:443
作者
Xu, Qingguo [1 ,2 ]
Ensign, Laura M. [1 ,2 ,3 ]
Boylan, Nicholas J. [2 ,3 ]
Schoen, Arne [6 ]
Gong, Xiaoqun [1 ,2 ,4 ,5 ]
Yang, Jeh-Chang [3 ]
Lamb, Nicholas W. [1 ,2 ]
Cai, Shutian [3 ]
Yu, Tao [2 ,7 ]
Freire, Ernesto [6 ]
Hanes, Justin [1 ,2 ,3 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Johns Hopkins Univ, Sch Med, Wilmer Eye Inst, Dept Ophthalmol, Baltimore, MD 21231 USA
[2] Johns Hopkins Univ, Sch Med, Ctr Nanomed, Baltimore, MD 21231 USA
[3] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[4] Tianjin Univ, Inst Nanobiotechnol, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[5] Tianjin Univ, Sch Life Sci, Tianjin 300072, Peoples R China
[6] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] Johns Hopkins Univ, Dept Environm Hlth Sci, Baltimore, MD 21231 USA
[9] Johns Hopkins Univ, Dept Oncol, Baltimore, MD 21231 USA
[10] Johns Hopkins Univ, Dept Neurosurg, Baltimore, MD 21231 USA
[11] Johns Hopkins Univ, Dept Pharmacol & Mol Sci, Baltimore, MD 21231 USA
基金
美国国家科学基金会;
关键词
drug delivery; vagina; paclitaxel; PLGA; mucosal surface; DRUG-DELIVERY; POLYMERIC NANOPARTICLES; PENETRATING NANOPARTICLES; VAGINAL DISTRIBUTION; PEGYLATED LIPOSOMES; RAPIDLY PENETRATE; PROTEIN-BINDING; PARTICLE-SIZE; CHAIN-LENGTH; BIODISTRIBUTION;
D O I
10.1021/acsnano.5b03876
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving sustained drug delivery to mucosal surfaces is a major challenge due to the presence of the protective mucus layer that serves to trap and rapidly remove foreign particulates. Nanoparticles engineered to rapidly penetrate mucosal barriers (mucus-penetrating particles, "MPP") have shown promise for improving drug distribution, retention and efficacy at mucosal surfaces. MPP are densely coated with polyethylene glycol (PEG), which shields the nanoparticle core from adhesive interactions with mucus. However, the PEG density required to impart the "stealth" properties to nanoparticles in mucus, and thus, uniform distribution in vivo, is still unknown. We prepared biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles with a range of PEG surface densities by blending various ratios of a diblock copolymer of PLGA and 5 kDa poly(ethylene glycol) (PLGA-PEG(5k)) with PLGA. We then evaluated the impact of PEG surface density, measured using an H-1 NMR method, on mucin binding in vitro, nanoparticle transport in freshly obtained human cervicovaginal mucus (CVM) ex vivo, and nanoparticle distribution in the mouse cervicovaginal tract in vivo. We found that at least 5% PEG was required to effectively shield the nanoparticle core from interacting with mucus components in vitro and ex vivo, thus leading to enhanced nanoparticle distribution throughout the mouse vagina in vivo. We then demonstrated that biodegradable MPP could be formulated from blends of PLGA and PLGA PEG polymers of various molecular weights, and that these MPP provide tunable drug loading and drug release rates and durations. Overall, we describe a methodology for rationally designing biodegradable, drug-loaded MPP for more uniform delivery to the vagina.
引用
收藏
页码:9217 / 9227
页数:11
相关论文
共 52 条
  • [11] Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake
    Ensign, Laura M.
    Hoen, Timothy E.
    Maisel, Katharina
    Cone, Richard A.
    Hanes, Justin S.
    [J]. BIOMATERIALS, 2013, 34 (28) : 6922 - 6929
  • [12] Mucus Penetrating Nanoparticles: Biophysical Tool and Method of Drug and Gene Delivery
    Ensign, Laura M.
    Schneider, Craig
    Suk, Jung Soo
    Cone, Richard
    Hanes, Justin
    [J]. ADVANCED MATERIALS, 2012, 24 (28) : 3887 - 3894
  • [13] The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
    Fang, Jun
    Nakamura, Hideaki
    Maeda, Hiroshi
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (03) : 136 - 151
  • [14] Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles
    Garcia-Fuentes, M
    Torres, D
    Martín-Pastor, M
    Alonso, MJ
    [J]. LANGMUIR, 2004, 20 (20) : 8839 - 8845
  • [15] 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG):: influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption
    Gref, R
    Lück, M
    Quellec, P
    Marchand, M
    Dellacherie, E
    Harnisch, S
    Blunk, T
    Müller, RH
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2000, 18 (3-4) : 301 - 313
  • [16] THE CONTROLLED INTRAVENOUS DELIVERY OF DRUGS USING PEG-COATED STERICALLY STABILIZED NANOSPHERES
    GREF, R
    DOMB, A
    QUELLEC, P
    BLUNK, T
    MULLER, RH
    VERBAVATZ, JM
    LANGER, R
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 1995, 16 (2-3) : 215 - 233
  • [17] BIODEGRADABLE LONG-CIRCULATING POLYMERIC NANOSPHERES
    GREF, R
    MINAMITAKE, Y
    PERACCHIA, MT
    TRUBETSKOY, V
    TORCHILIN, V
    LANGER, R
    [J]. SCIENCE, 1994, 263 (5153) : 1600 - 1603
  • [18] The Effect of Nanoparticle Polyethylene Glycol Surface Density on Ligand-Directed Tumor Targeting Studied in Vivo by Dual Modality Imaging
    Hak, Sjoerd
    Helgesen, Emily
    Hektoen, Helga H.
    Huuse, Else Marie
    Jarzyna, Peter A.
    Mulder, Willem J. M.
    Haraldseth, Olav
    Davies, Catharina de Lange
    [J]. ACS NANO, 2012, 6 (06) : 5648 - 5658
  • [19] Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona
    Heald, CR
    Stolnik, S
    Kujawinski, KS
    De Matteis, C
    Garnett, MC
    Illum, L
    Davis, SS
    Purkiss, SC
    Barlow, RJ
    Gellert, PR
    [J]. LANGMUIR, 2002, 18 (09) : 3669 - 3675
  • [20] Ichihara Masako, 2010, Pharmaceutics, V3, P1, DOI 10.3390/pharmaceutics3010001