Breaking Free from Cobalt Reliance in Lithium-Ion Batteries

被引:107
作者
Gourley, Storm William D. [1 ]
Or, Tyler [1 ]
Chen, Zhongwei [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, 200 Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LAYERED CATHODE MATERIALS; LI-ION; RECHARGEABLE LITHIUM; HIGH-ENERGY; ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; THERMAL-STABILITY; HIGH-CAPACITY; CYCLE LIFE; LONG-LIFE;
D O I
10.1016/j.isci.2020.101505
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exponential growth in demand for electric vehicles (EVs) necessitates increasing supplies of low-cost and high-performance lithium-ion batteries (LIB)s. Naturally, the ramp-up in LIB production raises concerns over raw material availability, where constraints can generate severe price spikes and bring the momentum and optimism of the EV market to a halt. Particularly, the reliance of cobalt in the cathode is concerning owing to its high cost, scarcity, and centralized and volatile supply chain structure. However, compositions suitable for EV applications that demonstrate high energy density and life time are all reliant on cobalt to some degree. In this work, we assess the necessity and feasibility of developing and commercializing cobalt-free cathode materials for LIBs. Promising cobalt-free compositions and critical areas of research are highlighted, which provide new insight into the role and contribution of cobalt.
引用
收藏
页数:16
相关论文
共 96 条
[1]   Energy efficiency of Li-ion battery packs re-used in stationary power applications [J].
Ahmadi, Leila ;
Fowler, Michael ;
Young, Steven B. ;
Fraser, Roydon A. ;
Gaffney, Ben ;
Walker, Sean B. .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2014, 8 :9-17
[2]   Cobalt-Free High-Capacity Ni-Rich Layered Li[Ni0.9Mn0.1]O2 Cathode [J].
Aishova, Assylzat ;
Park, Geon-Tae ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2020, 10 (04)
[3]  
Alves Dias P., 2018, PUBLICATIONS OFFICE
[4]  
Azevedo Marcelo., 2018, LITHIUM COBALT TALE
[5]   Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications [J].
Belharouak, I ;
Sun, YK ;
Liu, J ;
Amine, K .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :247-252
[6]  
Benchmark Mineral Intelligence, 2019, LITHIUM ION MEGAFACT
[7]   Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030 [J].
Berckmans, Gert ;
Messagie, Maarten ;
Smekens, Jelle ;
Omar, Noshin ;
Vanhaverbeke, Lieselot ;
Van Mierlo, Joeri .
ENERGIES, 2017, 10 (09)
[8]   An in situ structural study on the synthesis and decomposition of LiNiO2 [J].
Bianchini, Matteo ;
Fauth, Francois ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1808-1820
[9]   Oxygen Activity in Li-Rich Disordered Rock-Salt Oxide and the Influence of LiNbO3 Surface Modification on the Electrochemical Performance [J].
Cambaz, Musa Ali ;
Vinayan, Bhaghavathi P. ;
Gesswein, Holger ;
Schiele, Alexander ;
Sarapulova, Angelina ;
Diemant, Thomas ;
Mazilkin, Andrey ;
Brezesinski, Torsten ;
Behm, R. Juergen ;
Ehrenberg, Helmut ;
Fichtner, Maximilian .
CHEMISTRY OF MATERIALS, 2019, 31 (12) :4330-4340
[10]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289