Effect of different spectral distributions to image a contrast detail phantom in the mammography energy range

被引:13
作者
Bottigli, U. [1 ]
Golosio, B.
Masala, G. L.
Oliva, P.
Stumbo, S.
Bravin, A.
Bacci, A.
Serafini, L.
Maroli, C.
Petrillo, V.
Ferrario, M.
Vaccarezza, C.
机构
[1] Univ Sassari, Struttura Dipartimento Matemat & Fis, I-07100 Sassari, Italy
[2] Ist Nazl Fis Nucl, Sez Cagliari, Cagliari, Italy
[3] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[4] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[5] Univ Milan, Milan, Italy
[6] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS | 2006年 / 29卷 / 02期
关键词
D O I
10.1393/ncc/i2005-10196-y
中图分类号
学科分类号
摘要
Traditionally X-ray sources used in mammography are X-ray tubes. Synchrotron radiation sources have shown better imaging performances, but they cannot replace conventional X-ray tube systems in routine mammographic examinations. A new generation of quasi-mono chromatic, high-flux X-ray sources is currently under development, based on Thomson backscattering of photons produced by a laser on a highly focused electron beam. They offer important potential applications in the medical field. In this work, we will discuss an application in the field of mammography, by using a Monte Carlo code, in which the effect of different spectral distributions and different mean energies on the image quality is studied. A test object, consisting of a block of Polymethyl Methacrylate (PMMA) containing air-filled holes (Contrast Detail Phantom) is used for the simulations. Results show 1-2 keV of energy spread for a quasi-monochromatic source produce images whose quality is comparable within 3-4% with those obtained by monochromatic sources and whose visibility is dramatically enhanced with respect to images obtained with X-ray tubes.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 20 条
[1]  
ALESINI D, P PAC 2005 KNOXV US, P820
[2]   Low-dose phase contrast x-ray medical imaging [J].
Arfelli, F ;
Assante, M ;
Bonvicini, V ;
Bravin, A ;
Cantatore, G ;
Castelli, E ;
Dalla Palma, L ;
Di Michiel, M ;
Longo, R ;
Olivo, A ;
Pani, S ;
Pontoni, D ;
Poropat, P ;
Prest, M ;
Rashevsky, A ;
Tromba, G ;
Vacchi, A ;
Vallazza, E ;
Zanconati, F .
PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (10) :2845-2852
[3]  
BERGER MJ, 1987, 873597 NBSTIR
[4]   Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data [J].
Boone, JM .
MEDICAL PHYSICS, 2002, 29 (05) :869-875
[5]   Accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV [J].
Boone, JM ;
Seibert, JA .
MEDICAL PHYSICS, 1997, 24 (11) :1661-1670
[6]   Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments [J].
Bottigli, U ;
Brunetti, A ;
Golosio, B ;
Oliva, P ;
Stumbo, S ;
Vincze, L ;
Randaccio, P ;
Bleuet, P ;
Simionovici, A ;
Somogyi, A .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2004, 59 (10-11) :1747-1754
[7]   Exploiting the x-ray refraction contrast with an analyser: the state of the art [J].
Bravin, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (10A) :A24-A29
[8]  
Cranley K., 78 IPEM
[9]  
Dainty JC., 1974, IMAGE SCI
[10]  
DOBASHI K, P EPAC 2002 PAR FRAN