Topology of the compactified Jacobians of singular curves

被引:24
作者
Piontkowski, Jens [1 ]
机构
[1] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
关键词
D O I
10.1007/s00209-006-0021-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Euler number of the compactified Jacobian of a curve whose minimal unibranched normalization has only plane irreducible singularities with characteristic Puiseux exponents (p,q), (4,2q,s), (6,8,s), or (6,10,s). Further, we derive a combinatorial method to compute the Betti numbers of the compactified Jacobian of an unibranched rational curve with singularities like above. Some of the Betti numbers can be stated explicitly.
引用
收藏
页码:195 / 226
页数:32
相关论文
共 17 条
[1]  
ALTMAN A, 1977, REAL COMPLEX SINGULA, P1
[2]  
Azevedo A, 1967, THESIS PURDUE U THESIS PURDUE U
[3]   Counting rational curves on K3 surfaces [J].
Beauville, A .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (01) :99-108
[4]  
Cook P. R., 1993, THESIS U LIVERPOOL
[5]  
Corwin L., 1990, REPRESENTATIONS NI 1
[6]  
de Jong T., 2000, Local Analytic Geometry
[7]  
Fantechi B, 1999, J ALGEBRAIC GEOM, V8, P115
[8]  
FULTON W, 1997, INTERSECTION THEORY
[9]  
Greuel G-M., 1993, J ALGEBRAIC GEOM, V2, P81
[10]   SIMPLE CURVE SINGULARITIES AND TORSION-FREE MODULES [J].
GREUEL, GM ;
KNORRER, H .
MATHEMATISCHE ANNALEN, 1985, 270 (03) :417-425