Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells

被引:142
作者
Hofmann, Sandra
Knecht, Sven
Langer, Robert
Kaplan, David L.
Vunjak-Novakovic, Gordana
Merkle, Hans P.
Meinel, Lorenz [1 ]
机构
[1] ETH, Inst Pharmaceut Sci, Zurich, Switzerland
[2] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[3] ETH, Biomech Lab, Zurich, Switzerland
[4] MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[5] Columbia Univ, Dept Bioengn, New York, NY USA
来源
TISSUE ENGINEERING | 2006年 / 12卷 / 10期
关键词
D O I
10.1089/ten.2006.12.2729
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Silk fibroin scaffolds were studied as a new biomaterial option for tissue-engineered cartilage-like tissue. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on silk, collagen, and crosslinked collagen scaffolds and cultured for 21 days in serum-free chondrogenic medium. Cells proliferated more rapidly on the silk fibroin scaffolds than on the collagen matrices. The total content of glycosaminoglycan deposition was three times higher on silk as compared to collagen scaffolds. Glycosaminoglycan deposition coincided with overexpression of collagen type II and aggrecan genes. Cartilage-like tissue was homogeneously distributed throughout the entire silk scaffolds, while on the collagen and crosslinked collagen systems tissue formation was restricted to the outer rim, leaving a doughnut appearance. Round or angular-shaped cells resided in deep lacunae in the silk systems and stained positively for collagen type II. The aggregate modulus of the tissue-engineered cartilage constructs was more than 2-fold higher than that of the unseeded silk scaffold controls. These results suggest that silk fibroin scaffolds are suitable biomaterial substrates for autologous cartilage tissue engineering in serum-free medium and enable mechanical improvements along with compositional features suitable for durable implants to generate or regenerate cartilage.
引用
收藏
页码:2729 / 2738
页数:10
相关论文
共 42 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering [J].
Altman, GH ;
Lu, HH ;
Horan, RL ;
Calabro, T ;
Ryder, D ;
Kaplan, DL ;
Stark, P ;
Martin, I ;
Richmond, JC ;
Vunjak-Novakovic, G .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (06) :742-749
[3]   Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers [J].
Athanasiou, KA ;
Niederauer, GG ;
Agrawal, CM .
BIOMATERIALS, 1996, 17 (02) :93-102
[4]   INTERSPECIES COMPARISONS OF INSITU INTRINSIC MECHANICAL-PROPERTIES OF DISTAL FEMORAL CARTILAGE [J].
ATHANASIOU, KA ;
ROSENWASSER, MP ;
BUCKWALTER, JA ;
MALININ, TI ;
MOW, VC .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (03) :330-340
[5]   Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components [J].
Barry, F ;
Boynton, RE ;
Liu, BS ;
Murphy, JM .
EXPERIMENTAL CELL RESEARCH, 2001, 268 (02) :189-200
[6]  
Barry Frank P, 2003, Novartis Found Symp, V249, P86
[7]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[8]  
Brundtland GH, 2003, WHO TECH REP SER, V919, P1
[9]  
CAPLAN AI, 1994, CLIN PLAST SURG, V21, P429
[10]  
Caterson EJ, 2001, J BIOMED MATER RES, V57, P394, DOI 10.1002/1097-4636(20011205)57:3<394::AID-JBM1182>3.0.CO