Successes and failures of Hubbard-corrected density functional theory: The case of Mg doped LiCoO2

被引:28
作者
Santana, Juan A. [1 ]
Kim, Jeongnim [1 ]
Kent, P. R. C. [2 ,3 ]
Reboredo, Fernando A. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AB-INITIO; ELECTRONIC-STRUCTURE; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; 1ST-PRINCIPLES CALCULATIONS; STRUCTURAL STABILITY; THERMAL-STABILITY; DEFECT CHEMISTRY;
D O I
10.1063/1.4899040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO2. We find that formation of impurity states results in changes on the valency of Co in LiCoO2. Variation of the Co U shifts the energy of the impurity state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO2. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 90 条
[1]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[2]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Towards an exact description of electronic wavefunctions in real solids [J].
Booth, George H. ;
Grueneis, Andreas ;
Kresse, Georg ;
Alavi, Ali .
NATURE, 2013, 493 (7432) :365-370
[5]   Electrical conductivity and Li-6,Li-7 NMR studies of Li1+yCoO2 [J].
Carewska, M ;
Scaccia, S ;
Croce, F ;
Arumugam, S ;
Wang, Y ;
Greenbaum, S .
SOLID STATE IONICS, 1997, 93 (3-4) :227-237
[6]   Recharging lithium battery research with first-principles methods [J].
Ceder, G. ;
Hautier, G. ;
Jain, A. ;
Ong, S. P. .
MRS BULLETIN, 2011, 36 (03) :185-191
[7]   Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1722-1729
[8]  
Chase M., 1998, NIST-JANAF Thermochemical Tables, V1
[9]   Electronic structure of Li(Co0.7-xAl0.3)MgxO2 studied by electron energy-loss spectroscopy [J].
Chen, G ;
Li, C ;
Xu, X ;
Li, J ;
Kolb, U .
APPLIED PHYSICS LETTERS, 2003, 83 (06) :1142-1144
[10]   Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds [J].
Chevrier, V. L. ;
Ong, S. P. ;
Armiento, R. ;
Chan, M. K. Y. ;
Ceder, G. .
PHYSICAL REVIEW B, 2010, 82 (07)