DYNAMICS OF DELAY-COUPLED EXCITABLE NEURAL SYSTEMS

被引:45
作者
Dahlem, M. A. [1 ]
Hiller, G. [1 ]
Panchuk, A. [2 ]
Schoell, E. [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[2] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2009年 / 19卷 / 02期
关键词
Excitable systems; turn-on delay; delay-induced oscillation; NEURONAL NETWORKS; PATTERN-FORMATION; FEEDBACK; OSCILLATIONS; FIELDS; NOISE; MODEL;
D O I
10.1142/S0218127409023111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonlinear dynamics of two delay-coupled neural systems each modeled by excitable dynamics of FitzHugh-Nagumo type and demonstrate that bistability between the stable fixed point and limit cycle oscillations occurs for sufficiently large delay times tau and coupling strength C. As the mechanism for these delay-induced oscillations, we identify a saddle-node bifurcation of limit cycles.
引用
收藏
页码:745 / 753
页数:9
相关论文
共 50 条
  • [1] Dynamics of delay-coupled FitzHugh-Nagumo neural rings
    Mao, Xiaochen
    Sun, Jianqiao
    Li, Shaofan
    CHAOS, 2018, 28 (01)
  • [2] Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units
    Franovic, Igor
    Todorovic, Kristina
    Vasovic, Nebojsa
    Buric, Nikola
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [3] Dynamics of globally delay-coupled neurons displaying subthreshold oscillations
    Masoller, Cristina
    Torrent, M. C.
    Garcia-Ojalvo, Jordi
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901): : 3255 - 3266
  • [4] Collective dynamics of globally delay-coupled complex Ginzburg-Landau oscillators
    Thakura, Bhumika
    Sen, Abhijit
    CHAOS, 2019, 29 (05)
  • [5] Patterned Dynamics of Delay-Coupled Swarms with Random Communication Graphs
    Szwaykowska, K.
    Mier-y-Teran-Romero, L.
    Schwartz, I. B.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6496 - 6501
  • [6] Stability switches and multistability coexistence in a delay-coupled neural oscillators system
    Song, Zigen
    Xu, Jian
    JOURNAL OF THEORETICAL BIOLOGY, 2012, 313 : 98 - 114
  • [7] Capturing pattern bi-stability dynamics in delay-coupled swarms
    Mier-y-Teran-Romero, L.
    Schwartz, I. B.
    EPL, 2014, 105 (02)
  • [8] Stochastic switching in delay-coupled oscillators
    D'Huys, Otti
    Juengling, Thomas
    Kinzel, Wolfgang
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [9] Synchronization of delay-coupled oscillator networks
    Klinshov, V. V.
    Nekorkin, V. I.
    PHYSICS-USPEKHI, 2013, 56 (12) : 1217 - 1229
  • [10] Coherent Pattern Prediction in Swarms of Delay-Coupled Agents
    Mier-y-Teran-Romero, Luis
    Forgoston, Eric
    Schwartz, Ira B.
    IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (05) : 1034 - 1044