A New Trajectory Similarity Measure for GPS Data

被引:14
作者
Ismail, Anas [1 ]
Vigneron, Antoine [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Visual Comp Ctr, Thuwal 239556900, Saudi Arabia
来源
PROCEEDINGS OF THE 6TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON GEOSTREAMING (IWGS) 2015 | 2015年
关键词
Trajectory similarity measure; GPS trajectories; DTW; MOVING-OBJECTS;
D O I
10.1145/2833165.2833173
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new algorithm for measuring the similarity between trajectories, and in particular between GPS traces. We call this new similarity measure the Merge Distance (MD). Our approach is robust against subsampling and supersampling. We perform experiments to compare this new similarity measure with the two main approaches that have been used so far: Dynamic Time Warping (DTW) and the Euclidean distance.
引用
收藏
页码:19 / 22
页数:4
相关论文
共 24 条
[1]  
Agrawal R., 1993, Proceedings of the International Conference on Foundations of Data Organization and Algorithms, Chicago, IL, P69
[2]  
Chen L., 2005, 2005 ACM SIGMOD INT, P491
[3]  
Chen Z., 2010, Proceedings of the ACM SIGMOD International Conference on Management of Data, P255
[4]  
Chen ZB, 2011, PROC INT CONF DATA, P900, DOI 10.1109/ICDE.2011.5767890
[5]  
Frentzos E., R TREE PORTAL TRUCK
[6]  
Gonzalez Hector, 2007, P 33 INT C VER LARG, P794
[7]   A foundation for representing and querying moving objects [J].
Güting, RH ;
Böhlen, MH ;
Erwig, M ;
Jensen, CS ;
Lorentzos, NA ;
Schneider, M ;
Vazirgiannis, M .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2000, 25 (01) :1-42
[8]   Semantic-based surveillance video retrieval [J].
Hu, Weiming ;
Xie, Dan ;
Fu, Zhouyu ;
Zeng, Wenrong ;
Maybank, Steve .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (04) :1168-1181
[9]   A Hybrid Prediction Model for moving objects [J].
Jeung, Hoyoung ;
Liu, Qing ;
Shen, Heng Tao ;
Zhou, Xiaofang .
2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, :70-+
[10]   On the need for time series data mining benchmarks: A survey and empirical demonstration [J].
Keogh, E ;
Kasetty, S .
DATA MINING AND KNOWLEDGE DISCOVERY, 2003, 7 (04) :349-371