Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system

被引:108
|
作者
Zhang, Yalei [1 ]
Li, Yuting [1 ]
Dai, Chaomeng [2 ]
Zhou, Xuefei [1 ]
Zhang, Weixian [1 ]
机构
[1] Tongji Univ, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
[2] Tongji Univ, Coll Civil Engn, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
nZVI; Cadmium; Wastewater; Mechanisms; CORE-SHELL STRUCTURE; HEAVY-METAL IONS; AQUEOUS-SOLUTION; ACTIVATED CARBON; SURFACE COMPLEXATION; CHLORINATED METHANES; CADMIUM; ADSORPTION; REMOVAL; NANOPARTICLES;
D O I
10.1016/j.cej.2014.01.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nanoscale zero-valent iron (nZVI) for removal of cadmium from polluted water was investigated. Batch experiments were conducted at 1:100 mass ratio of Cd to nZVI to investigate low, medium and high concentration levels of species. Effect of solution pH was importantly evaluated on the removal efficiency of Cd(II) by nZVI. The removal process is fast and can reach equilibrium in less than 30 min. The cadmium removal efficiency increases rapidly with rising pH in the range of 3.0-8.6, maximum removal capacity of 66.9 mg Cd(II)/g nZVI was observed. Benchmark tests were also conducted with oxidized nZVI (nZVI oxidized with oxygen bubbling), which had much lower removal efficiency of Cd(II) under identical conditions. Flow experiments with a two-stage reactor were performed to examine the effects of hydraulic retention time, influent cadmium concentration, nZVI recycle ratio and nZVI dose. Removal efficiency over 91% was achieved within a residence time of 20 min in a two-stage flow reactor. Higher nZVI recycle ratio and longer hydraulic retention time enhanced removal efficiency. Transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray powder diffraction were employed to characterize nZVI before and after the reactions. Data suggest that Cd(II) is sequestrated within nZVI by adsorption or surface complex formation with no apparent reduction of Cd(II). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 50 条
  • [1] Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective
    Li, Shaolin
    Li, Lei
    Zhang, Weixian
    ENGINEERING, 2024, 36 : 16 - 20
  • [2] Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite
    Fei, Xuening
    Cao, Lingyun
    Zhou, Lifeng
    Gu, Yingchun
    Wang, Xiaoyang
    WATER SCIENCE AND TECHNOLOGY, 2012, 66 (12) : 2539 - 2545
  • [3] Phosphorous removal by nanoscale zero-valent iron (nZVI) and chitosan-coated nZVI (CS-nZVI)
    Shanableh, A.
    Darwish, N.
    Bhattacharjee, S.
    Al-Khayyat, G.
    Khalil, M.
    Mousa, M.
    Tayara, A.
    Al-Samarai, M.
    DESALINATION AND WATER TREATMENT, 2020, 184 : 282 - 291
  • [4] Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species
    Ma, Xingmao
    Gurung, Arun
    Deng, Yang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 443 : 844 - 849
  • [5] Synergistic effect and mechanism of Cd(II) and As(III) adsorption by biochar supported sulfide nanoscale zero-valent iron
    Zheng, Xiaoyu
    Wu, Qiuju
    Huang, Chao
    Wang, Ping
    Cheng, Hao
    Sun, Chengyou
    Zhu, Jian
    Xu, Haiyin
    Ouyang, Ke
    Guo, Jing
    Liu, Zhiming
    ENVIRONMENTAL RESEARCH, 2023, 231
  • [6] Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZVI)
    Xia Xuefen
    Hua Yilong
    Huang Xiaoyue
    Ling Lan
    Zhang Weixian
    ACTA CHIMICA SINICA, 2017, 75 (06) : 594 - 601
  • [7] Surface Chemistry and Phase Transformation of Nanoscale Zero-Valent Iron (nZVI) in Aquatic Media
    Liu Jing
    Gu Tianhang
    Wang Wei
    Liu Ai-rong
    Zhang Wei-xian
    ACTA CHIMICA SINICA, 2019, 77 (02) : 121 - 129
  • [8] Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes
    Liu, Jing
    Liu, Airong
    Wang, Wei
    Li, Ruofan
    Zhang, Wei-xian
    CHEMOSPHERE, 2019, 237
  • [9] Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective
    Liu, Airong
    Wang, Wei
    Liu, Jing
    Fu, Rongbing
    Zhang, Wei-xian
    SCIENCE BULLETIN, 2018, 63 (24) : 1641 - 1648
  • [10] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Li, Xiao-qin
    Brown, Derick G.
    Zhang, Wei-xian
    JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (02) : 233 - 243