On the category of weak bialgebras

被引:10
作者
Boehm, Gabriella [1 ]
Gomez-Torrecillas, Jose [2 ]
Lopez-Centella, Esperanza [2 ]
机构
[1] Wigner Res Ctr Phys, H-1525 Budapest, Hungary
[2] Univ Granada, Dept Algebra, E-18071 Granada, Spain
基金
匈牙利科学研究基金会;
关键词
Weak bialgebra; Duoidal category; Groupoid; Weak Hopf algebra; Hopf monoid; FINITE QUANTUM GROUPOIDS; HOPF-ALGEBRAS; MONOIDAL CATEGORIES; CONVOLUTION; COALGEBRAS;
D O I
10.1016/j.jalgebra.2013.09.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weak (Hopf) bialgebras are described as (Hopf) bimonoids in appropriate duoidal (also known as 2-monoidal) categories. This interpretation is used to define a category wba of weak bialgebras over a given field. As an application, the "free vector space" functor from the category of small categories with finitely many objects to wba is shown to possess a right adjoint, given by taking (certain) group-like elements. This adjunction is proven to restrict to the full subcategories of groupoids and of weak Hopf algebras, respectively. As a corollary, we obtain equivalences between the category of small categories with finitely many objects and the category of pointed cosemisimple weak bialgebras; and between the category of small groupoids with finitely many objects and the category of pointed cosemisimple weak Hopf algebras. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:801 / 844
页数:44
相关论文
共 27 条
[1]  
Abe E., 1980, HOPF ALGEBRAS
[2]   Modules, comodules, and cotensor products over Frobenius algebras [J].
Abrams, L .
JOURNAL OF ALGEBRA, 1999, 219 (01) :201-213
[3]  
Aguiar M., 2010, CRM Monogr. Ser., V29
[4]  
[Anonymous], 1998, Categories for the working mathematician
[5]   WEAK BIALGEBRAS AND MONOIDAL CATEGORIES [J].
Boehm, G. ;
Caenepeel, S. ;
Janssen, K. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) :4584-4607
[6]   On the double crossed product of weak Hopf algebras [J].
Boehm, Gabriella ;
Gomez-Torrecillas, Jose .
HOPF ALGEBRAS AND TENSOR CATEGORIES, 2013, 585 :153-+
[7]  
Böhm G, 2009, HBK ALGEBR, V6, P173, DOI 10.1016/S1570-7954(08)00205-2
[8]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[9]  
Booker T, 2013, THEOR APPL CATEG, V28, P166
[10]   Hopf monads on monoidal categories [J].
Bruguieres, Alain ;
Lack, Steve ;
Virelizier, Alexis .
ADVANCES IN MATHEMATICS, 2011, 227 (02) :745-800