Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach

被引:38
|
作者
Bispo, Polyanna da Conceicao [1 ,2 ]
Rodriguez-Veiga, Pedro [2 ,3 ]
Zimbres, Barbara [4 ]
de Miranda, Sabrina Couto [5 ]
Giusti Cezare, Cassio Henrique [6 ]
Fleming, Sam [7 ]
Baldacchino, Francesca [7 ]
Louis, Valentin [2 ]
Rains, Dominik [8 ,9 ]
Garcia, Mariano [10 ]
Espirito-Santo, Fernando Del Bon [2 ]
Roitman, Iris [11 ,12 ]
Pacheco-Pascagaza, Ana Maria [2 ]
Gou, Yaqing [2 ]
Roberts, John [2 ]
Barrett, Kirsten [2 ]
Ferreira, Laerte Guimaraes [6 ]
Shimbo, Julia Zanin [4 ]
Alencar, Ane [4 ]
Bustamante, Mercedes [11 ,12 ]
Woodhouse, Iain Hector [7 ,13 ]
Sano, Edson Eyji [14 ]
Ometto, Jean Pierre [15 ]
Tansey, Kevin [2 ]
Balzter, Heiko [2 ,3 ]
机构
[1] Univ Manchester, Sch Environm Educ & Dev, Dept Geog, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Leicester, Ctr Landscape & Climate Res, Sch Geog Geol & Environm, Leicester LE1 7RH, Leics, England
[3] NERC Natl Ctr Earth Observat, Univ Rd, Leicester LE1 7RH, Leics, England
[4] Amazon Environm Res Inst IPAM, BR-71503505 Brasilia, DF, Brazil
[5] Univ Goias State UEG, BR-76190000 Palmeiras De Goias, Brazil
[6] Fed Univ Goias UFG, BR-74690900 Goiania, Go, Brazil
[7] Carbomap Ltd, Edinburgh EH1 1LZ, Midlothian, Scotland
[8] Univ Ghent, Dept Environm, B-9000 Ghent, Belgium
[9] Univ Leicester, Dept Phys & Astron, Earth Observat Sci, Leicester LE1 7RH, Leics, England
[10] Univ Alcala, Dept Geol Geog & Environm, Madrid 28801, Spain
[11] Univ Brasilia UNB, Dept Ecol, BR-70910900 Brasilia, DF, Brazil
[12] Brazilian Res Network Global Climate Change Rede, BR-70910900 Brasilia, DF, Brazil
[13] Univ Edinburgh, Sch Geosci, Edinburgh EH1 1LZ, Midlothian, Scotland
[14] Brazilian Agr Res Corp Embrapa Cerrados, BR-70770901 Brasilia, DF, Brazil
[15] Natl Inst Space Res INPE, Earth Syst Sci Ctr CCST, Av Astronautas 1758, BR-12227010 Sao Jose Dos Campos, SP, Brazil
基金
英国自然环境研究理事会;
关键词
aboveground biomass; Cerrado ecosystem; random forest; SAR; BELOW-GROUND BIOMASS; ALOS PALSAR DATA; FOREST BIOMASS; CARBON STOCKS; VOLUME ESTIMATION; AIRBORNE LIDAR; NATIONAL-PARK; VEGETATION; LANDSAT; MODELS;
D O I
10.3390/rs12172685
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R-2= 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha(-1)and a bias of 0.43 Mg ha(-1).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna
    Acerbi-Junior, F. W.
    Clevers, J. G. P. W.
    Schaepman, M. E.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2006, 8 (04): : 278 - 288
  • [2] Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest
    Ghosh, Sujit Madhab
    Behera, Mukunda Dev
    APPLIED GEOGRAPHY, 2018, 96 : 29 - 40
  • [3] Optimising carbon fixation through agroforestry: Estimation of aboveground biomass using multi-sensor data synergy and machine learning
    Singh, R. K.
    Biradar, C. M.
    Behera, M. D.
    Prakash, A. J.
    Das, P.
    Mohanta, M. R.
    Krishna, G.
    Dogra, A.
    Dhyani, S. K.
    Rizvi, J.
    ECOLOGICAL INFORMATICS, 2024, 79
  • [4] Dominant Expression of SAR Backscatter in Predicting Aboveground Biomass: Integrating Multi-Sensor Data and Machine Learning in Sikkim Himalaya
    A. Jaya Prakash
    Sujoy Mudi
    Somnath Paramanik
    Mukunda Dev Behera
    Shanu Shekhar
    Narpati Sharma
    Bikash Ranjan Parida
    Journal of the Indian Society of Remote Sensing, 2024, 52 : 871 - 883
  • [5] Dominant Expression of SAR Backscatter in Predicting Aboveground Biomass: Integrating Multi-Sensor Data and Machine Learning in Sikkim Himalaya
    Prakash, A. Jaya
    Mudi, Sujoy
    Paramanik, Somnath
    Behera, Mukunda Dev
    Shekhar, Shanu
    Sharma, Narpati
    Parida, Bikash Ranjan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) : 871 - 883
  • [6] Leaf area index and aboveground biomass estimation of an alpine peatland with a UAV multi-sensor approach
    Assiri, Marco
    Sartori, Anna
    Persichetti, Antonio
    Miele, Cristiano
    Faelga, Regine Anne
    Blount, Tegan
    Silvestri, Sonia
    GISCIENCE & REMOTE SENSING, 2023, 60 (01)
  • [7] Multi-Sensor Aboveground Biomass Estimation in the Broadleaved Hyrcanian Forest of Iran
    Ronoud, Ghasem
    Fatehi, Parviz
    Darvishsefat, Ali A.
    Tomppo, Erkki
    Praks, Jaan
    Schaepman, Michael E.
    CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (06) : 818 - 834
  • [8] Parsimonious machine learning for the global mapping of aboveground biomass potential
    Paz, Diego Bengochea
    Marquez-Torres, Alba
    Pompeu, Joao
    Martin-Ducup, Olivier
    Villa, Ferdinando
    Kohler, Carmen
    Balbi, Stefano
    ECOGRAPHY, 2025,
  • [9] Evaluating machine learning approaches for aboveground biomass prediction in fragmented high-elevated forests using multi-sensor satellite data
    Qadeer, Asim
    Shakir, Muhammad
    Wang, Li
    Talha, Syed Muhammad
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [10] Multi-Sensor, Active Fire-Supervised, One-Class Burned Area Mapping in the Brazilian Savanna
    Pereira, Allan A.
    Libonati, Renata
    Rodrigues, Julia A.
    Nogueira, Joana
    Santos, Filippe L. M.
    Oom, Duarte
    Sanches, Waislan
    Alvarado, Swanni T.
    Pereira, Jose M. C.
    REMOTE SENSING, 2021, 13 (19)