Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach

被引:42
作者
Bispo, Polyanna da Conceicao [1 ,2 ]
Rodriguez-Veiga, Pedro [2 ,3 ]
Zimbres, Barbara [4 ]
de Miranda, Sabrina Couto [5 ]
Giusti Cezare, Cassio Henrique [6 ]
Fleming, Sam [7 ]
Baldacchino, Francesca [7 ]
Louis, Valentin [2 ]
Rains, Dominik [8 ,9 ]
Garcia, Mariano [10 ]
Espirito-Santo, Fernando Del Bon [2 ]
Roitman, Iris [11 ,12 ]
Pacheco-Pascagaza, Ana Maria [2 ]
Gou, Yaqing [2 ]
Roberts, John [2 ]
Barrett, Kirsten [2 ]
Ferreira, Laerte Guimaraes [6 ]
Shimbo, Julia Zanin [4 ]
Alencar, Ane [4 ]
Bustamante, Mercedes [11 ,12 ]
Woodhouse, Iain Hector [7 ,13 ]
Sano, Edson Eyji [14 ]
Ometto, Jean Pierre [15 ]
Tansey, Kevin [2 ]
Balzter, Heiko [2 ,3 ]
机构
[1] Univ Manchester, Sch Environm Educ & Dev, Dept Geog, Oxford Rd, Manchester M13 9PL, Lancs, England
[2] Univ Leicester, Ctr Landscape & Climate Res, Sch Geog Geol & Environm, Leicester LE1 7RH, Leics, England
[3] NERC Natl Ctr Earth Observat, Univ Rd, Leicester LE1 7RH, Leics, England
[4] Amazon Environm Res Inst IPAM, BR-71503505 Brasilia, DF, Brazil
[5] Univ Goias State UEG, BR-76190000 Palmeiras De Goias, Brazil
[6] Fed Univ Goias UFG, BR-74690900 Goiania, Go, Brazil
[7] Carbomap Ltd, Edinburgh EH1 1LZ, Midlothian, Scotland
[8] Univ Ghent, Dept Environm, B-9000 Ghent, Belgium
[9] Univ Leicester, Dept Phys & Astron, Earth Observat Sci, Leicester LE1 7RH, Leics, England
[10] Univ Alcala, Dept Geol Geog & Environm, Madrid 28801, Spain
[11] Univ Brasilia UNB, Dept Ecol, BR-70910900 Brasilia, DF, Brazil
[12] Brazilian Res Network Global Climate Change Rede, BR-70910900 Brasilia, DF, Brazil
[13] Univ Edinburgh, Sch Geosci, Edinburgh EH1 1LZ, Midlothian, Scotland
[14] Brazilian Agr Res Corp Embrapa Cerrados, BR-70770901 Brasilia, DF, Brazil
[15] Natl Inst Space Res INPE, Earth Syst Sci Ctr CCST, Av Astronautas 1758, BR-12227010 Sao Jose Dos Campos, SP, Brazil
基金
英国自然环境研究理事会;
关键词
aboveground biomass; Cerrado ecosystem; random forest; SAR; BELOW-GROUND BIOMASS; ALOS PALSAR DATA; FOREST BIOMASS; CARBON STOCKS; VOLUME ESTIMATION; AIRBORNE LIDAR; NATIONAL-PARK; VEGETATION; LANDSAT; MODELS;
D O I
10.3390/rs12172685
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The tropical savanna in Brazil known as the Cerrado covers circa 23% of the Brazilian territory, but only 3% of this area is protected. High rates of deforestation and degradation in the woodland and forest areas have made the Cerrado the second-largest source of carbon emissions in Brazil. However, data on these emissions are highly uncertain because of the spatial and temporal variability of the aboveground biomass (AGB) in this biome. Remote-sensing data combined with local vegetation inventories provide the means to quantify the AGB at large scales. Here, we quantify the spatial distribution of woody AGB in the Rio Vermelho watershed, located in the centre of the Cerrado, at a high spatial resolution of 30 metres, with a random forest (RF) machine-learning approach. We produced the first high-resolution map of the AGB for a region in the Brazilian Cerrado using a combination of vegetation inventory plots, airborne light detection and ranging (LiDAR) data, and multispectral and radar satellite images (Landsat 8 and ALOS-2/PALSAR-2). A combination of random forest (RF) models and jackknife analyses enabled us to select the best remote-sensing variables to quantify the AGB on a large scale. Overall, the relationship between the ground data from vegetation inventories and remote-sensing variables was strong (R-2= 0.89), with a root-mean-square error (RMSE) of 7.58 Mg ha(-1)and a bias of 0.43 Mg ha(-1).
引用
收藏
页数:22
相关论文
共 95 条
[1]  
[Anonymous], 2016, NAT COMM BRAZ UN FRA
[2]  
[Anonymous], 2013, INTRO STAT LEARNING
[3]  
[Anonymous], 2014, BIOGEOSCIENCES, DOI DOI 10.5194/bg-11-6827-2014
[4]  
[Anonymous], 2017, BRAZ FOR REF EM LEV
[5]   An integrated pan-tropical biomass map using multiple reference datasets [J].
Avitabile, Valerio ;
Herold, Martin ;
Heuvelink, Gerard B. M. ;
Lewis, Simon L. ;
Phillips, Oliver L. ;
Asner, Gregory P. ;
Armston, John ;
Ashton, Peter S. ;
Banin, Lindsay ;
Bayol, Nicolas ;
Berry, Nicholas J. ;
Boeckx, Pascal ;
de Jong, Bernardus H. J. ;
DeVries, Ben ;
Girardin, Cecile A. J. ;
Kearsley, Elizabeth ;
Lindsell, Jeremy A. ;
Lopez-Gonzalez, Gabriela ;
Lucas, Richard ;
Malhi, Yadvinder ;
Morel, Alexandra ;
Mitchard, Edward T. A. ;
Nagy, Laszlo ;
Qie, Lan ;
Quinones, Marcela J. ;
Ryan, Casey M. ;
Ferry, Slik J. W. ;
Sunderland, Terry ;
Laurin, Gaia Vaglio ;
Gatti, Roberto Cazzolla ;
Valentini, Riccardo ;
Verbeeck, Hans ;
Wijaya, Arief ;
Willcock, Simon .
GLOBAL CHANGE BIOLOGY, 2016, 22 (04) :1406-1420
[6]   Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda [J].
Avitabile, Valerio ;
Baccini, Alessandro ;
Friedl, Mark A. ;
Schmullius, Christiane .
REMOTE SENSING OF ENVIRONMENT, 2012, 117 :366-380
[7]   Tropical forests are a net carbon source based on aboveground measurements of gain and loss [J].
Baccini, A. ;
Walker, W. ;
Carvalho, L. ;
Farina, M. ;
Sulla-Menashe, D. ;
Houghton, R. A. .
SCIENCE, 2017, 358 (6360) :230-233
[8]   Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps [J].
Baccini, A. ;
Goetz, S. J. ;
Walker, W. S. ;
Laporte, N. T. ;
Sun, M. ;
Sulla-Menashe, D. ;
Hackler, J. ;
Beck, P. S. A. ;
Dubayah, R. ;
Friedl, M. A. ;
Samanta, S. ;
Houghton, R. A. .
NATURE CLIMATE CHANGE, 2012, 2 (03) :182-185
[9]   Integration of Polarimetric PALSAR Attributes and Local Geomorphometric Variables Derived from SRTM for Forest Biomass Modeling in Central Amazonia [J].
Bispo, P. C. ;
Santos, J. R. ;
Valeriano, M. M. ;
Touzi, R. ;
Seifert, F. M. .
CANADIAN JOURNAL OF REMOTE SENSING, 2014, 40 (01) :26-42
[10]   Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry [J].
Bispo, Polyanna Da Conceicao ;
Pardini, Matteo ;
Papathanassiou, Konstantinos P. ;
Kugler, Florian ;
Balzter, Heiko ;
Rains, Dominik ;
dos Santos, Joao Roberto ;
Rizaev, Igor G. ;
Tansey, Kevin ;
dos Santos, Maiza Nara ;
Araujo, Luciana Spinelli .
REMOTE SENSING OF ENVIRONMENT, 2019, 232