A free energy satisfying finite difference method for Poisson-Nernst-Planck equations

被引:62
作者
Liu, Hailiang [1 ]
Wang, Zhongming [2 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
基金
美国国家科学基金会;
关键词
Poisson equation; Nernst-Planck equation; Free energy; Positivity; ELECTROSTATIC FREE-ENERGY; BOLTZMANN EQUATION; LIQUID-JUNCTION; TIME BEHAVIOR; DIFFUSION; MODELS; GRAMICIDIN; ELECTRODIFFUSION; CHANNEL; LONG;
D O I
10.1016/j.jcp.2014.02.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we design and analyze a free energy satisfying finite difference method for solving Poisson-Nernst-Planck equations in a bounded domain. The algorithm is of second order in space, with numerical solutions satisfying all three desired properties: i) mass conservation, ii) positivity preserving, and iii) free energy satisfying in the sense that these schemes satisfy a discrete free energy dissipation inequality. These ensure that the computed solution is a probability density, and the schemes are energy stable and preserve the equilibrium solutions. Both one- and two-dimensional numerical results are provided to demonstrate the good qualities of the algorithm, as well as effects of relative size of the data given. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 40 条
[1]   On large time asymptotics for drift-diffusion-Poisson systems [J].
Arnold, A ;
Markowich, P ;
Toscani, G .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :571-581
[2]   Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion [J].
Bedrossian, Jacob ;
Rodriguez, Nancy ;
Bertozzi, Andrea L. .
NONLINEARITY, 2011, 24 (06) :1683-1714
[3]   A microscopic view of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :8644-8648
[4]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[5]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[6]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[7]   On an aggregation model with long and short range interactions [J].
Burger, Martin ;
Capasso, Vincenzo ;
Morale, Daniela .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (03) :939-958
[8]   LARGE TIME BEHAVIOR OF NONLOCAL AGGREGATION MODELS WITH NONLINEAR DIFFUSION [J].
Burger, Martin ;
Di Francesco, Marco .
NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (04) :749-785
[9]   Three-dimensional Poisson-Nernst-Planck theory studies:: Influence of membrane electrostatics on gramicidin A channel conductance [J].
Cárdenas, AE ;
Coalson, RD ;
Kurnikova, MG .
BIOPHYSICAL JOURNAL, 2000, 79 (01) :80-93
[10]   Electrostatic free energy and its variations in implicit solvent models [J].
Che, Jianwei ;
Dzubiella, Joachim ;
Li, Bo ;
McCammon, J. Andrew .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (10) :3058-3069