Ground State Solutions for a Quasilinear Schrodinger Equation

被引:12
作者
Zhang, Jian [1 ]
Lin, Xiaoyan [2 ]
Tang, Xianhua [3 ]
机构
[1] Hunan Univ Commerce, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[2] Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R China
[3] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
关键词
Quasilinear Schrodinger equation; superlinear; ground state solution; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; SEMICLASSICAL STATES; MULTIPLE SOLUTIONS; EXISTENCE;
D O I
10.1007/s00009-016-0816-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear Schrodinger equation of the form -Delta u + V(x)u - Delta(u(2))u = g(x, u), x is an element of R-N where V and g are 1-periodic in x(1), ..., x(N), and g is a superlinear but subcritical growth as vertical bar u vertical bar -> infinity. We develop a more direct and simpler approach to prove the existence of ground state solutions.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Soliton solutions for a class of quasilinear Schrodinger equations with a parameter [J].
Alves, Claudianor O. ;
Wang, Youjun ;
Shen, Yaotian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) :318-343
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]  
[Anonymous], 1997, Minimax theorems
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[6]   EXISTENCE AND CONCENTRATION OF SOLITARY WAVES FOR A CLASS OF QUASILINEAR SCHRODINGER EQUATIONS [J].
Cassani, Daniele ;
do O, Joao Marcos ;
Moameni, Abbas .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) :281-306
[7]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[8]   Solitary waves for a class of quasilinear Schrodinger equations in dimension two [J].
do O, Joao Marcos ;
Severo, Uberlandio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :275-315
[9]   Soliton solutions for quasilinear Schrodinger equations:: The critical exponential case [J].
do O, Jodo M. B. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3357-3372
[10]   Multiple solutions for a quasilinear Schrodinger equation [J].
Fang, Xiang-Dong ;
Szulkin, Andrzej .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :2015-2032