Dimension of the minimal cover and fractal analysis of time series

被引:23
作者
Dubovikov, PM
Starchenko, NV
Dubovikov, MS
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] INTRAST, Moscow 109004, Russia
[3] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA
关键词
time series; fractal analysis; scaling; multifractals; stock price; feedback;
D O I
10.1016/j.physa.2004.03.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a new approach to the fractal analysis of time series of various natural, technological and social processes. To compute the fractal dimension, we introduce the sequence of the minimal covers associated with a decreasing scale delta. This results in new fractal characteristics: the dimension of minimal covers D-mu, the variation index It related to D, and the new multifractal spectrum zeta(q) defined on the basis of mu. Numerical computations performed for the financial series of companies entering Dow Jones Industrial Index show that the minimal scale tau(mu), which is necessary for determining mu with an acceptable accuracy, is almost two orders smaller than an analogous scale for the Hurst index H. This allows us to consider mu as a local fractal characteristic. The presented fractal analysis of the financial series shows that mu(t) is related to the stability of underlying processes. The results are interpreted in terms of the feedback. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:591 / 608
页数:18
相关论文
共 50 条
  • [21] USING FUZZY AND FRACTAL METHODS FOR ANALYZING MARKET TIME SERIES
    Kroha, P.
    Lauschke, M.
    ICFC 2010/ ICNC 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION AND INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION, 2010, : 85 - 92
  • [22] A COMPARATIVE STUDY OF VALIDITY RANGES OF SOME FRACTAL METHODS OF TIME SERIES ANALYSIS
    Galvez-Coyt, G.
    Munoz-Diosdado, A.
    Del Rio-Correa, J. L.
    Angulo-Brown, F.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (02) : 235 - 246
  • [23] Fractal methods and cardiac interbeat time series
    Guzman-Vargas, L.
    Calleja-Quevedo, E.
    Angulo-Brown, R.
    REVISTA MEXICANA DE FISICA, 2005, 51 (02) : 122 - 127
  • [24] Unsupervised Land Cover Change Detection: Meaningful Sequential Time Series Analysis
    Salmon, Brian P.
    Olivier, Jan Corne
    Wessels, Konrad J.
    Kleynhans, Waldo
    van den Bergh, Frans
    Steenkamp, Karen C.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (02) : 327 - 335
  • [25] Fractal dimension estimators for a fractal process
    Morita, T
    Sato, K
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (03) : 631 - 637
  • [26] Evaluation of the effects of hemoglobinopathies on the mandible with fractal dimension analysis
    Serindere, G.
    Belgin, C. A.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2019, 22 (10) : 1435 - 1440
  • [27] Fractal Analysis of pH Time-Series of an Anaerobic Digester for Cheese Whey Treatment
    Sanchez-Garcia, Dianna
    Hernandez-Garcia, Hector
    Mendez-Acosta, Hugo O.
    Hernandez-Aguirre, Alberto
    Puebla, Hector
    Hernandez-Martinez, Eliseo
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2018, 16 (11)
  • [28] Monitoring anaerobic sequential batch reactors via fractal analysis of pH time series
    Mendez-Acosta, H. O.
    Hernandez-Martinez, E.
    Jauregui-Jauregui, J. A.
    Alvarez-Ramirez, J.
    Puebla, H.
    BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (08) : 2131 - 2139
  • [29] The complexity and recognizable information business trademarks design - applied fractal analysis and fractal dimension
    Hsu, Yu-Lin
    PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS FOR SCIENCE AND ENGINEERING (IEEE-ICAMSE 2016), 2016, : 408 - 411
  • [30] Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma
    Smitha, K. A.
    Gupta, A. K.
    Jayasree, R. S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (17) : 6937 - 6947