A new proof of the reverse order law for Moore-Penrose inverse

被引:0
作者
Zheng, Bing [1 ]
Xiong, Zhiping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
Advances in Matrix Theory and Applications | 2006年
关键词
Moore-Penrose inverse; weighted Moore-Penrose inverse; reverse order law; generalized Schur complement;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the ranks of generalized Schur complements, a new proof of the reverse order law for Moore-Penrose inverse and more necessary and sufficient conditions are presented. Similar proof and conditions be extended to the weighted Moore-Penrose inverse.
引用
收藏
页码:154 / 157
页数:4
相关论文
共 50 条
  • [21] REVERSE ORDER LAW FOR WEIGHTED MOORE-PENROSE INVERSES OF MULTIPLE MATRIX PRODUCTS
    Xiong, Zhiping
    Qin, Yingying
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 121 - 135
  • [22] Perturbation results and forward order law for the Moore-Penrose inverse in rings with involution
    Mihajlovic, Nadica
    Djordjevic, Dragan S.
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 425 - 439
  • [23] On a partial order defined by the weighted Moore-Penrose inverse
    Hernandez, A.
    Lattanzi, M.
    Thome, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7310 - 7318
  • [24] Reverse-order law for weighted Moore–Penrose inverse of tensors
    Krushnachandra Panigrahy
    Debasisha Mishra
    Advances in Operator Theory, 2020, 5 : 39 - 63
  • [25] Mixed-type Reverse Order Law for Moore-Penrose Inverse of Products of Three Elements in Ring with Involution
    Wang, Long
    Zhang, Shuang Shuang
    Zhang, Xiao Xiang
    Chen, Jian Long
    FILOMAT, 2014, 28 (10) : 1997 - 2008
  • [26] Reverse order law for the weighted Moore–Penrose inverse in C*-algebras
    Dijana Mosić
    Aequationes mathematicae, 2013, 85 : 465 - 470
  • [27] Generalization of the Moore-Penrose inverse
    Stojanovic, Katarina S.
    Mosic, Dijana
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [28] Extending the Moore-Penrose Inverse
    Dincic, Nebojsa C.
    FILOMAT, 2016, 30 (02) : 419 - 428
  • [29] THE WEIGHTED MOORE-PENROSE INVERSE FOR SUM OF MATRICES
    Xiong, Zhiping
    Qin, Yingying
    OPERATORS AND MATRICES, 2014, 8 (03): : 747 - 757
  • [30] A new method for computing Moore-Penrose inverse matrices
    Toutounian, F.
    Ataei, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 412 - 417