Electrospun Cytocompatible Polycaprolactone Blend Composite with Enhanced Wettability for Bone Tissue Engineering

被引:25
作者
Chakrapani, V. Yogeshwar [1 ,2 ]
Kumar, T. S. Sampath [1 ]
Raj, Deepa. K. [2 ]
Kumary, T. V. [2 ]
机构
[1] Indian Inst Technol Madras, Med Mat Lab, Madras 600036, Tamil Nadu, India
[2] Sree Chitra Tirunal Inst Med Sci & Technol, Tissue Culture Lab, Trivandrum 695012, Kerala, India
关键词
Electrospun Scaffolds; PCL/PBAPCL/HA Composite; Enhanced Wettability; Cytocompatible Mat; SCAFFOLD; MINERALIZATION;
D O I
10.1166/jnn.2017.13713
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrospinning is recently used in tissue engineering due to their excellent ability to mimic the structure of extra cellular matrix (ECM), a prerequisite for creating an optimal microenvironment for cell growth. Electrospun nanofibrous composite scaffolds consisting of polycaprolactone (PCL)/Poly(1,4-butylene adipate-co-polycaprolactam) (PBAPCL) blend with hydroxyapatite (HA) have been fabricated to enhance the wettability and osseointegrative properties. Fourier transform-infrared spectroscopy (FT-IR) confirmed molecular interactions of the polymer blend along with the presence of HA. X-ray diffraction analysis (XRD) indicated semi-crystalline nature of the mat and also the presence of HA in the composite mat. The morphology of the fibres, were analyzed using scanning electron microscopy (SEM) and the diameter was found to be in the range of 400-600 nm. The composite fibers were of larger diameter compared to their polymer counterparts. Improved wettability of the electrospun composite mat has been observed by contact angle analysis. In vitro cell culture studies by Live/Dead assay and MTT using human osteosarcoma (HOS) cells indicated the cytocompatible nature of electrospun mat which was further confirmed by cell adhesion using SEM and Actin-phalloidin staining. Addition of PBAPCL and HA to PCL have a beneficial effect on cell growth and proliferation thereby making the composite, a prospective scaffold for bone tissue engineering applications.
引用
收藏
页码:2320 / 2328
页数:9
相关论文
共 31 条
[1]  
Agrawal CM, 1997, J BIOMED MATER RES, V38, P105, DOI 10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO
[2]  
2-U
[3]  
[Anonymous], 2012, INT J CHEML BIOL ENG
[4]   Electrospun Polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration [J].
Balu, Rajkamal ;
Kumar, T. S. Sampath ;
Ramalingam, Murugan ;
Ramakrishna, Seeram .
JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2011, 1 (01) :30-39
[5]   Recent advances in bone tissue engineering scaffolds [J].
Bose, Susmita ;
Roy, Mangal ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2012, 30 (10) :546-554
[6]   An electrospun triphasic nanofibrous scaffold for bone tissue engineering [J].
Catledge, S. A. ;
Clem, W. C. ;
Shrikishen, N. ;
Chowdhury, S. ;
Stanishevsky, A. V. ;
Koopman, M. ;
Vohra, Y. K. .
BIOMEDICAL MATERIALS, 2007, 2 (02) :142-150
[7]   Bone regeneration: current concepts and future directions [J].
Dimitriou, Rozalia ;
Jones, Elena ;
McGonagle, Dennis ;
Giannoudis, Peter V. .
BMC MEDICINE, 2011, 9
[8]   Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts [J].
Gupta, Deepika ;
Venugopal, J. ;
Mitra, S. ;
Dev, V. R. Giri ;
Ramakrishna, S. .
BIOMATERIALS, 2009, 30 (11) :2085-2094
[9]   Scaffolds in tissue engineering bone and cartilage [J].
Hutmacher, DW .
BIOMATERIALS, 2000, 21 (24) :2529-2543
[10]   Fabrication of 3D electrospun structures from poly(lactide-co-glycolide acid)-nano-hydroxyapatite composites [J].
Leung, Linus H. ;
Fan, Stephanie ;
Naguib, Hani E. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (04) :242-249