Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture

被引:42
作者
Zheng, Y. [1 ]
Thomas, A. [1 ]
Schmidt, C. M. [1 ]
Dann, C. T. [1 ]
机构
[1] Indiana Univ, Bloomington, IN 47405 USA
关键词
germ cells; testis; cell culture; fertility; stage-specific embryonic antigens; LONG-TERM PROLIFERATION; IN-VITRO PROPAGATION; SELF-RENEWAL; MOUSE; TRANSPLANTATION; IDENTIFICATION; EXPANSION; PROTEINS; TESTIS;
D O I
10.1093/humrep/deu232
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1-2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1-2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). UTF1, FGFR3, DAZL and ZBTB16 qRT-PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in early primary testicular cell cultures (1-2 weeks), their expression steadily declined over time in vitro. After 6 weeks in culture only somatic cells were detected. Different groups attempting SSC culture have utilized different sources of human testes and minor differences in the preparation and maintenance of the testicular cell cultures. Differences in outcome may be explained by genetic background of the source tissue or technical differences. The ability to propagate human SSCs in vitro is a prerequisite for proposed autologous transplantation therapy aimed at restoring fertility to men who have been treated for childhood cancer. By applying the assays validated here it will be possible to quantitatively compare human SSC culture conditions. The eventual development of conditions for long-term propagation of human SSCs in vitro will greatly facilitate learning about the basic biology of these cells and in turn the ability to use human SSCs in therapy.
引用
收藏
页码:2497 / 2511
页数:15
相关论文
共 45 条
  • [1] SPERMATOGENIC CELLS OF PREPUBERAL MOUSE - ISOLATION AND MORPHOLOGICAL CHARACTERIZATION
    BELLVE, AR
    CAVICCHIA, JC
    MILLETTE, CF
    OBRIEN, DA
    BHATNAGAR, YM
    DYM, M
    [J]. JOURNAL OF CELL BIOLOGY, 1977, 74 (01) : 68 - 85
  • [2] Male germline stem cells: From mice to men
    Brinster, Ralph L.
    [J]. SCIENCE, 2007, 316 (5823) : 404 - 405
  • [3] Maintaining the male germline: regulation of spermatogonial stem cells
    Caires, Kyle
    Broady, Johnathan
    McLean, Derek
    [J]. JOURNAL OF ENDOCRINOLOGY, 2010, 205 (02) : 133 - 145
  • [4] Deriving multipotent stem cells from mouse spermatogonial stem cells: a new tool for developmental and clinical research
    de Rooij, Dirk G.
    Mizrak, S. Canan
    [J]. DEVELOPMENT, 2008, 135 (13): : 2207 - 2213
  • [5] Eliminating malignant contamination from therapeutic human spermatogonial stem cells
    Dovey, Serena L.
    Valli, Hanna
    Hermann, Brian P.
    Sukhwani, Meena
    Donohue, Julia
    Castro, Carlos A.
    Chu, Tianjiao
    Sanfilippo, Joseph S.
    Orwig, Kyle E.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (04) : 1833 - 1843
  • [6] Spermatogonial Stem Cells: Mouse and Human Comparisons
    Dym, Martin
    Kokkinaki, Maria
    He, Zuping
    [J]. BIRTH DEFECTS RESEARCH PART C-EMBRYO TODAY-REVIEWS, 2009, 87 (01) : 27 - 34
  • [7] Developmental Expression of the Pluripotency Factor Sal-Like Protein 4 in the Monkey, Human and Mouse Testis: Restriction to Premeiotic Germ Cells
    Eildermann, K.
    Aeckerle, N.
    Debowski, K.
    Godmann, M.
    Christiansen, H.
    Heistermann, M.
    Schweyer, S.
    Bergmann, M.
    Kliesch, S.
    Gromoll, J.
    Ehmcke, J.
    Schlatt, S.
    Behr, R.
    [J]. CELLS TISSUES ORGANS, 2012, 196 (03) : 206 - 220
  • [8] GOLESTANEH N, 2011, STEM CELL RES THER, P1
  • [9] Fertility of Male Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study
    Green, Daniel M.
    Kawashima, Toana
    Stovall, Marilyn
    Leisenring, Wendy
    Sklar, Charles A.
    Mertens, Ann C.
    Donaldson, Sarah S.
    Byrne, Julianne
    Robison, Leslie L.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (02) : 332 - 339
  • [10] Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture
    Hamra, FK
    Chapman, KM
    Nguyen, DM
    Williams-Stephens, AA
    Hammer, RE
    Garbers, DL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (48) : 17430 - 17435