On the existence and the profile of nodal solutions of elliptic equations involving critical growth

被引:52
作者
Bartsch, T
Micheletti, AM
Pistoia, A
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56100 Pisa, Italy
[3] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
sign changing solutions; nodal domains; critical exponent;
D O I
10.1007/s00526-006-0004-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of sign changing solutions to the slightly subcritical problem -Delta u = \u\(p-1-epsilon) u in Omega, u = 0 on partial derivative Omega. where Omega is a smooth bounded domain in R-N, N >= 3, p = (N + 2)/(N - 2) and epsilon > 0. We prove that, for e small enough, there exist N pairs of solutions which change sign exactly once. Moreover, the nodal surface of these solutions intersects the boundary of Omega, provided some suitable conditions are satisfied.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 34 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]  
ATKINSON FV, 1988, CR ACAD SCI I-MATH, V306, P711
[3]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[4]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[5]   ON A VARIATIONAL PROBLEM WITH LACK OF COMPACTNESS - THE TOPOLOGICAL EFFECT OF THE CRITICAL-POINTS AT INFINITY [J].
BAHRI, A ;
LI, YY ;
REY, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (01) :67-93
[6]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[7]  
Bahri A., 1989, RES NOTES MATH, V182
[8]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[9]  
Bartsch T., 2003, Topol. Methods Nonlinear Anal, V22, P1, DOI [10.12775/tmna.2003.025, DOI 10.12775/TMNA.2003.025]
[10]  
BARTSCH T, CONFIGURATION SPACES