A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space

被引:42
作者
Macri, Emanuele [1 ]
机构
[1] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Bridgeland stability conditions; derived category; Bogomolov-Gieseker inequality; STABILITY CONDITIONS;
D O I
10.2140/ant.2014.8.173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalized Bogomolov-Gieseker inequality for tilt-stable complexes on a smooth projective threefold was conjectured by Bayer, Toda, and the author. We show that such inequality holds true in general if it holds true when the polarization is sufficiently small. As an application, we prove it for the threedimensional projective space.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 25 条
[1]   Bridgeland-stable moduli spaces for K-trivial surfaces [J].
Arcara, Daniele ;
Bertram, Aaron ;
Lieblich, Max .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :1-38
[2]   The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability [J].
Arcara, Daniele ;
Bertram, Aaron ;
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2013, 235 :580-626
[3]  
Bayer A., 2012, J AM MATH S IN PRESS
[4]  
Bayer A., 2011, J ALG GEOM IN PRESS
[5]  
Bayer A., 2011, TOUR STABILITY CONDI
[6]   Stability conditions on triangulated categories [J].
Bridgeland, Tom .
ANNALS OF MATHEMATICS, 2007, 166 (02) :317-345
[7]   Stability conditions on K3 surfaces [J].
Bridgeland, Tom .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) :241-291
[8]  
Bridgeland T, 2009, P SYMP PURE MATH, V80, P1
[9]  
Happel D, 1996, MEM AM MATH SOC, V120, P1
[10]   THE GENUS OF SPACE-CURVES [J].
HARRIS, J .
MATHEMATISCHE ANNALEN, 1980, 249 (03) :191-204