Nuclear factor of activated T-cells, NFATC1, governs FLT3ITD-driven hematopoietic stem cell transformation and a poor prognosis in AML

被引:14
作者
Solovey, Maria [1 ]
Wang, Ying [1 ]
Michel, Christian [1 ]
Metzeler, Klaus H. [2 ]
Herold, Tobias [2 ]
Goethert, Joachim R. [3 ]
Ellenrieder, Volker [4 ]
Hessmann, Elisabeth [4 ]
Gattenloehner, Stefan [5 ]
Neubauer, Andreas [1 ]
Pavlinic, Dinko [6 ]
Benes, Vladimir [6 ]
Rupp, Oliver [7 ]
Burchert, Andreas [1 ]
机构
[1] Philipps Univ Marburg, Dept Hematol Oncol & Immunol, Univ Hosp Giessen & Marburg, Campus Marburg, Marburg, Germany
[2] Ludwig Maximilians Univ Munchen, Univ Hosp, Lab Leukemia Diagnost, Dept Med 3, Munich, Germany
[3] Univ Hosp Essen, Dept Hematol, Essen, Germany
[4] Univ Hosp Gottingen, Dept Gastroenterol, Gottingen, Germany
[5] Justus Liebig Univ, Inst Pathol, Giessen, Germany
[6] EMBL Heidelberg, Genom Core Facil, Heidelberg, Germany
[7] Univ Giessen, Dept Bioinformat & Syst Biol, Giessen, Germany
关键词
FLT3(ITD); Acute myeloid leukemia; Hematopoietic stem cells; NFATC1; Drug resistance; ACUTE MYELOID-LEUKEMIA; INTERNAL TANDEM DUPLICATION; THERAPEUTIC TARGET; MYELOPROLIFERATIVE DISEASE; FLT3; MUTATIONS; KNOCK-IN; TRANSCRIPTION; INFLAMMATION; CONTRIBUTE; DYNAMICS;
D O I
10.1186/s13045-019-0765-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundAcute myeloid leukemia (AML) patients with a high allelic burden of an internal tandem duplication (ITD)-mutated FMS-like Tyrosine Kinase-3 (FLT3) have a dismal outcome. FLT3(ITD) triggers the proliferation of the quiescent hematopoietic stem cell (HSC) pool but fails to directly transform HSCs. While the inflammatory transcription factor nuclear factor of activated T-cells 2 (NFAT2, NFATC1) is overexpressed in AML, it is unknown whether it plays a role in FLT3(ITD)-induced HSC transformation.MethodsWe generated a triple transgenic mouse model, in which tamoxifen-inducible Cre-recombinase targets expression of a constitutively nuclear transcription factor NFATC1 to FLT3(ITD) positive HSC. Emerging genotypes were phenotypically, biochemically, and also transcriptionally characterized using RNA sequencing. We also retrospectively analyzed the overall survival of AML patients with different NFATC1 expression status.ResultsWe find that NFATC1 governs FLT3(ITD)-driven precursor cell expansion and transformation, causing a fully penetrant lethal AML. FLT3(ITD)/NFATC1-AML is re-transplantable in secondary recipients and shows primary resistance to the FLT3(ITD)-kinase inhibitor quizartinib. Mechanistically, NFATC1 rewires FLT3(ITD)-dependent signaling output in HSC, involving augmented K-RAS signaling and a selective de novo recruitment of key HSC-transforming signaling pathways such as the Hedgehog- and WNT/B-Catenin signaling pathways. In human AML, NFATC1 overexpression is associated with poor overall survival.ConclusionsNFATC1 expression causes FLT3(ITD)-induced transcriptome changes, which are associated with HSC transformation, quizartinib resistance, and a poor prognosis in AML.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block [J].
Kirstetter, Peggy ;
Anderson, Kristina ;
Porse, Bo T. ;
Jacobsen, Sten Eirik W. ;
Nerlov, Claus .
NATURE IMMUNOLOGY, 2006, 7 (10) :1048-1056
[22]   Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib [J].
Kumari, Ashu ;
Brendel, Cornelia ;
Hochhaus, Andreas ;
Neubauer, Andreas ;
Burchert, Andreas .
BLOOD, 2012, 119 (02) :530-539
[23]   Multiple modes of chromatin remodeling by Forkhead box proteins [J].
Lalmansingh, Avin S. ;
Karmakar, Sudipan ;
Jin, Yetao ;
Nagaich, Akhilesh K. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (07) :707-715
[24]   FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia [J].
Lee, Benjamin H. ;
Tothova, Zuzana ;
Levine, Ross L. ;
Anderson, Kristina ;
Buza-Vidas, Natalija ;
Cullen, Dana E. ;
McDowell, Elizabeth P. ;
Adelsperger, Jennifer ;
Frhling, Stefan ;
Huntly, Brian J. P. ;
Beran, Miloslav ;
Jacobsen, Sten Eirik ;
Gilliland, D. Gary .
CANCER CELL, 2007, 12 (04) :367-380
[25]   Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia [J].
Ley, Timothy J. ;
Miller, Christopher ;
Ding, Li ;
Raphael, Benjamin J. ;
Mungall, Andrew J. ;
Robertson, A. Gordon ;
Hoadley, Katherine ;
Triche, Timothy J., Jr. ;
Laird, Peter W. ;
Baty, Jack D. ;
Fulton, Lucinda L. ;
Fulton, Robert ;
Heath, Sharon E. ;
Kalicki-Veizer, Joelle ;
Kandoth, Cyriac ;
Klco, Jeffery M. ;
Koboldt, Daniel C. ;
Kanchi, Krishna-Latha ;
Kulkarni, Shashikant ;
Lamprecht, Tamara L. ;
Larson, David E. ;
Lin, Ling ;
Lu, Charles ;
McLellan, Michael D. ;
McMichael, Joshua F. ;
Payton, Jacqueline ;
Schmidt, Heather ;
Spencer, David H. ;
Tomasson, Michael H. ;
Wallis, John W. ;
Wartman, Lukas D. ;
Watson, Mark A. ;
Welch, John ;
Wendl, Michael C. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Birol, Inanc ;
Butterfield, Yaron ;
Chiu, Readman ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung ;
Corbett, Richard ;
Dhalla, Noreen ;
Guin, Ranabir ;
He, An ;
Hirst, Carrie ;
Hirst, Martin ;
Holt, Robert A. ;
Jones, Steven .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (22) :2059-2074
[26]   Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model [J].
Li, Li ;
Piloto, Obdulio ;
Nguyen, Ho Bao ;
Greenberg, Kathleen ;
Takamiya, Kogo ;
Racke, Frederick ;
Huso, David ;
Small, Donald .
BLOOD, 2008, 111 (07) :3849-3858
[27]   Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia [J].
Li, Sheng ;
Garrett-Bakelman, Francine E. ;
Chung, Stephen S. ;
Sanders, Mathijs A. ;
Hricik, Todd ;
Rapaport, Franck ;
Patel, Jay ;
Dillon, Richard ;
Vijay, Priyanka ;
Brown, Anna L. ;
Perl, Alexander E. ;
Cannon, Joy ;
Bullinger, Lars ;
Luger, Selina ;
Becker, Michael ;
Lewis, Ian D. ;
To, Luen Bik ;
Delwel, Ruud ;
Lowenberg, Bob ;
Doehner, Hartmut ;
Guzman, Monica L. ;
Hassane, Duane C. ;
Roboz, Gail J. ;
Grimwade, David ;
Valk, Peter J. M. ;
D'Andrea, Richard J. ;
Carroll, Martin ;
Park, Christopher Y. ;
Neuberg, Donna ;
Levine, Ross ;
Melnick, Ari M. ;
Mason, Christopher E. .
NATURE MEDICINE, 2016, 22 (07) :792-799
[28]   NFAT proteins: Key regulators of T-cell development and function [J].
Macian, F .
NATURE REVIEWS IMMUNOLOGY, 2005, 5 (06) :472-484
[29]   Partners in transcription:: NFAT and AP-1 [J].
Macián, F ;
López-Rodríguez, C ;
Rao, A .
ONCOGENE, 2001, 20 (19) :2476-2489
[30]   NFATc1 as a therapeutic target in FLT3-ITD-positive AML [J].
Metzelder, S. K. ;
Michel, C. ;
von Bonin, M. ;
Rehberger, M. ;
Hessmann, E. ;
Inselmann, S. ;
Solovey, M. ;
Wang, Y. ;
Sohlbach, K. ;
Brendel, C. ;
Stiewe, T. ;
Charles, J. ;
Ten Haaf, A. ;
Ellenrieder, V. ;
Neubauer, A. ;
Gattenloehner, S. ;
Bornhaeuser, M. ;
Burchert, A. .
LEUKEMIA, 2015, 29 (07) :1470-1477