Enabling industrial production of electrodes by use of slot-die coating for HT-PEM fuel cells

被引:39
作者
Bodner, Merit [1 ]
Garcia, Hector R. [1 ]
Steenberg, Thomas [1 ]
Terkelsen, Carina [1 ]
Alfaro, Silvia M. [1 ]
Avcioglu, Gokce S. [1 ]
Vassiliev, Anton [1 ]
Primdahl, Soren [1 ]
Hjuler, Hans Aage [1 ]
机构
[1] Danish Power Syst, Egeskovvej 6C, DK-3490 Kvistgaard, Denmark
关键词
HT-PEM fuel cell; Single cell testing; Wet reformate; Production upscaling; GDE coating; Benchmarking; DEGRADATION; HYDROGEN;
D O I
10.1016/j.ijhydene.2018.11.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With high temperature polymer electrolyte membrane fuel cell systems gradually penetrating the commercial market, material manufacturing processes demand re-evaluation for big scale production. Three different methods for electrode production are compared in terms of their suitability and performance. Homogeneity, reproducibility and durability of coated electrodes using hydrogen as well as wet reformate fuel in selected cases are investigated. This shows that the slot-die process has clear advantages in comparison to spraying and tape casting with regard to upscaling potential and film homogeneity. These electrodes have proven to be durable over more than 6000 h, with degradation rates as low as 1 mu V h(-1) over 3000 h of testing. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12793 / 12801
页数:9
相关论文
共 24 条
  • [1] Effect of pinhole location on degradation in polymer electrolyte fuel cells
    Bodner, Merit
    Hochenauer, Christoph
    Hacker, Viktor
    [J]. JOURNAL OF POWER SOURCES, 2015, 295 : 336 - 348
  • [2] Bulatova R., 2014, THESIS
  • [3] Crone KP, 2016, SLOT DIE COATING PRI
  • [4] Hydrogen and fuel cells: Towards a sustainable energy future
    Edwards, P. P.
    Kuznetsov, V. L.
    David, W. I. F.
    Brandon, N. P.
    [J]. ENERGY POLICY, 2008, 36 (12) : 4356 - 4362
  • [5] Engl T, 2016, HIGH TEMP POLYM ELEC, P297, DOI [10.1007/978-3-319-17082-4_14, DOI 10.1007/978-3-319-17082-4_14]
  • [6] Design and optimization of a proton exchange membrane fuel cell CHP system for residential use
    Gandiglio, M.
    Lanzini, A.
    Santarelli, M.
    Leone, P.
    [J]. ENERGY AND BUILDINGS, 2014, 69 : 381 - 393
  • [7] Hacker V., 2016, Integrated Membrane Systems and Processes, V1, P285, DOI [10.1002/9781118739167.ch11, DOI 10.1002/9781118739167.CH11]
  • [8] Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review
    Haque, M. Ahsanul
    Sulong, A. B.
    Loh, K. S.
    Majlan, E. Herianto
    Husaini, T.
    Rosli, R. Emilia
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (14) : 9156 - 9179
  • [9] Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging
    Holst, T.
    Vassiliev, A.
    Kerr, R.
    Li, Q.
    Steenberg, T.
    Terkelsen, C.
    Hjuler, H. A.
    [J]. JOURNAL OF POWER SOURCES, 2014, 270 : 208 - 212
  • [10] Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review
    Iulianelli, A.
    Ribeirinha, P.
    Mendes, A.
    Basile, A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 : 355 - 368