Learning Hierarchical Multi-label Classification Trees from Network Data

被引:0
|
作者
Stojanova, Daniela [1 ]
Ceci, Michelangelo [2 ]
Malerba, Donato [2 ]
Dzeroski, Saso [1 ,3 ,4 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
[2] Univ Bari, Dipartimento Informat, Bari, Italy
[3] Jozef Stefan Int Postgrad Sch, Ljubljana, Slovenia
[4] COE, Integrated Approaches Chem & Biol Proteins, Proteins, Slovakia
来源
DISCOVERY SCIENCE | 2013年 / 8140卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an algorithm for hierarchical multi-label classification (HMC) in a network context. It is able to classify instances that may belong to multiple classes at the same time and consider the hierarchical organization of the classes. It assumes that the instances are placed in a network and uses information on the network connections during the learning of the predictive model. Many real world prediction problems have classes that are organized hierarchically and instances that can have pairwise connections. One example is web document classification, where topics (classes) are typically organized into a hierarchy and documents are connected by hyperlinks. Another example, which is considered in this paper, is gene/protein function prediction, where genes/proteins are connected and form protein-to-protein interaction (PPI) networks. Network datasets are characterized by a form of autocorrelation, where the value of a variable at a given node depends on the values of variables at the nodes it is connected with. Combining the hierarchical multi-label classification task with network prediction is thus not trivial and requires the introduction of the new concept of network autocorrelation for HMC. The proposed algorithm is able to profitably exploit network autocorrelation when learning a tree-based prediction model for HMC. The learned model is in the form of a Predictive Clustering Tree (PCT) and predicts multiple (hierarchically organized) labels at the leaves. Experiments show the effectiveness of the proposed approach for different problems of gene function prediction, considering different PPI networks. The results show that different networks introduce different benefits in different problems of gene function prediction.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 50 条
  • [31] Knowledge Guided Hierarchical Multi-Label Classification Over Ticket Data
    Zeng, Chunqiu
    Zhou, Wubai
    Li, Tao
    Shwartz, Larisa
    Grabarnik, Genady Ya
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2017, 14 (02): : 246 - 260
  • [32] Feature Selection for Hierarchical Multi-label Classification
    da Silva, Luan V. M.
    Cerri, Ricardo
    ADVANCES IN INTELLIGENT DATA ANALYSIS XIX, IDA 2021, 2021, 12695 : 196 - 208
  • [33] Evaluating Extreme Hierarchical Multi-label Classification
    Amigo, Enrique
    Delgado, Agustin D.
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5809 - 5819
  • [34] Feature learning network with transformer for multi-label image classification
    Zhou, Wei
    Dou, Peng
    Su, Tao
    Hu, Haifeng
    Zheng, Zhijie
    PATTERN RECOGNITION, 2023, 136
  • [35] Effects of the hierarchy in hierarchical, multi-label classification
    Daisey, Katie
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207
  • [36] Multi-label classification using hierarchical embedding
    Kumar, Vikas
    Pujari, Arun K.
    Padmanabhan, Vineet
    Sahu, Sandeep Kumar
    Kagita, Venkateswara Rao
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 263 - 269
  • [37] Hyperbolic Embeddings for Hierarchical Multi-label Classification
    Tomaz, Stepisnik
    Kocev, Dragi
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 66 - 76
  • [38] Metric Learning for Multi-label Classification
    Brighi, Marco
    Franco, Annalisa
    Maio, Dario
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 24 - 33
  • [39] Hyperspherical Learning in Multi-Label Classification
    Ke, Bo
    Zhu, Yunquan
    Li, Mengtian
    Shu, Xiujun
    Qiao, Ruizhi
    Ren, Bo
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 38 - 55
  • [40] Compact learning for multi-label classification
    Lv, Jiaqi
    Wu, Tianran
    Peng, Chenglun
    Liu, Yunpeng
    Xu, Ning
    Geng, Xin
    PATTERN RECOGNITION, 2021, 113