Solar Fuels Production by Artificial Photosynthesis

被引:1
作者
Ager, Joel W. [1 ]
Lee, Min-Hyung [1 ,2 ]
Javey, Ali [2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
SOLAR CHEMICAL ENERGY STORAGE (SOLCHES) | 2013年 / 1568卷
关键词
photocathode; InP; photoelectrochemistry; artificial photosynthesis; SURFACE RECOMBINATION VELOCITY; HYDROGEN-PRODUCTION; PHOTOELECTROCHEMICAL DEVICE; WATER; SEMICONDUCTORS; PHOTOCATHODES; CHALLENGES; CONVERSION; CATALYSTS; DESIGN;
D O I
10.1063/1.4848078
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A practical method to use sunlight to generate storable chemical energy could dramatically change the landscape of global energy generation. One of the fundamental requirements of such an "artificial photosynthesis" scheme is a light capture and conversion approach capable of generating the required chemical potentials (e.g. >1.23 V for splitting water into H-2 and O-2). An approach based on inorganic light absorbers coupled directly to oxidation and reduction catalysts is being developed in the Joint Center for Artificial Photosynthesis (JCAP). P-type III-V semiconductors with a high surface area can be used as high current density photocathodes. The longevity under operation of these photocathodes can be improved by the use of conformal metal oxides deposited by atomic layer deposition.
引用
收藏
页码:3 / 6
页数:4
相关论文
共 33 条
[1]   HYDROGEN EVOLUTION AT P-INP PHOTOCATHODES IN ALKALINE ELECTROLYTE [J].
ANG, PGP ;
SAMMELLS, AF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (06) :1462-1464
[2]   Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex [J].
Arai, Takeo ;
Sato, Shunsuke ;
Uemura, Keiko ;
Morikawa, Takeshi ;
Kajino, Tsutomu ;
Motohiro, Tomoyoshi .
CHEMICAL COMMUNICATIONS, 2010, 46 (37) :6944-6946
[3]   Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays [J].
Boettcher, Shannon W. ;
Warren, Emily L. ;
Putnam, Morgan C. ;
Santori, Elizabeth A. ;
Turner-Evans, Daniel ;
Kelzenberg, Michael D. ;
Walter, Michael G. ;
McKone, James R. ;
Brunschwig, Bruce S. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1216-1219
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies [J].
Denholm, Paul ;
Margolis, Robert M. .
ENERGY POLICY, 2007, 35 (09) :4424-4433
[7]   HYDROGEN-EVOLVING SOLAR-CELLS [J].
HELLER, A .
SCIENCE, 1984, 223 (4641) :1141-1148
[8]  
HELLER A, 1982, J AM CHEM SOC, V104, P6942, DOI 10.1021/ja00389a010
[9]   MEASUREMENT OF SURFACE RECOMBINATION VELOCITY IN SEMICONDUCTORS BY DIFFRACTION FROM PICOSECOND TRANSIENT FREE-CARRIER GRATINGS [J].
HOFFMAN, CA ;
JARASIUNAS, K ;
GERRITSEN, HJ ;
NURMIKKO, AV .
APPLIED PHYSICS LETTERS, 1978, 33 (06) :536-539
[10]   Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy [J].
Joyce, Hannah J. ;
Wong-Leung, Jennifer ;
Yong, Chaw-Keong ;
Docherty, Callum J. ;
Paiman, Suriati ;
Gao, Qiang ;
Tan, H. Hoe ;
Jagadish, Chennupati ;
Lloyd-Hughes, James ;
Herz, Laura M. ;
Johnston, Michael B. .
NANO LETTERS, 2012, 12 (10) :5325-5330