Pressure-enabled phonon engineering in metals

被引:32
作者
Lanzillo, Nicholas A. [1 ]
Thomas, Jay B. [2 ]
Watson, Bruce [2 ]
Washington, Morris [3 ]
Nayak, Saroj K. [1 ,4 ]
机构
[1] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Earth & Environm Sci, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Ctr Integrated Elect, Troy, NY 12180 USA
[4] Indian Inst Technol, Sch Basic Sci, Bhubaneswar 751007, Orissa, India
基金
美国国家科学基金会;
关键词
density functional theory; electron-phonon coupling; high-pressure conductivity; ALUMINUM; 1ST-PRINCIPLES; AL;
D O I
10.1073/pnas.1406721111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston-cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron-phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron-phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties.
引用
收藏
页码:8712 / 8716
页数:5
相关论文
共 28 条
[1]   Evidence of a fcc-hcp transition in aluminum at multimegabar pressure [J].
Akahama, Y ;
Nishimura, M ;
Kinoshita, K ;
Kawamura, H ;
Ohishi, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[2]  
[Anonymous], 1931, The Physics of High Pressure
[3]  
Ashcroft N., 2011, Solid State Physics
[4]   Electron-phonon coupling in the metallic elements Al, Au, Na, and Nb: A first-principles study [J].
Bauer, R ;
Schmid, A ;
Pavone, P ;
Strauch, D .
PHYSICAL REVIEW B, 1998, 57 (18) :11276-11282
[5]   APPARATUS FOR PHASE-EQUILIBRIUM MEASUREMENTS AT PRESSURES UP TO 50-KILOBARS AND TEMPERATURES UP TO 1750-DEGREES-C [J].
BOYD, FR ;
ENGLAND, JL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (02) :741-748
[6]   The effect of pressure on the electrical resistance of cobalt, aluminum, nickel, uranium, and caesium [J].
Bridgman, PW .
PROCEEDINGS OF THE AMERICAN ACADEMY OF ARTS AND SCIENCES, 1923, 58 (1/17) :151-161
[7]   ALUMINUM UNDER HIGH-PRESSURE .2. RESISTIVITY [J].
CHEUNG, J ;
ASHCROFT, NW .
PHYSICAL REVIEW B, 1979, 20 (08) :2991-2998
[8]   Gap opening in graphene by shear strain [J].
Cocco, Giulio ;
Cadelano, Emiliano ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2010, 81 (24)
[9]   Tc map and superconductivity of simple metals at high pressure [J].
Fan, Wei ;
Li, Y. L. ;
Wang, J. L. ;
Zou, L. J. ;
Zeng, Z. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (17-18) :696-702
[10]   First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. [J].
Gonze, X .
PHYSICAL REVIEW B, 1997, 55 (16) :10337-10354